ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 109-114 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Quantitative in-depth distribution of the elements contained in silicon-rich oxide thin films deposited on single-crystal silicon by low temperature plasma-assisted deposition has been performed by a combination of various MeV ion beam techniques. The quantity of oxygen and nitrogen has been measured by nuclear reactions, the silicon content has been determined by Rutherford backscattering, and elastic recoil detection was used for hydrogen. All the samples contain not only Si and O, but also N and H, which are residuals from the reactions involved in the deposition process. We did find that the MeV beam used in the nuclear techniques can induce a process of hydrogen desorption, which causes the measured H content to be a function of the He dose received by the sample. This phenomenon, not previously reported, must be taken into account to give the correct H content. The study of the kinetics of the He-induced hydrogen desorption has been used to correct the experimental data and to determine the original hydrogen content. The correction factor is in most of the cases close to 2 and outside any experimental error. Moreover the studies of the kinetics give information on the kinds of hydrogen complexes contained in the films. The results suggest that, on the basis of the strength of the binding energies, hydrogen is present in at least two different configurations, weakly and strongly bonded. In the first configuration hydrogen is easily desorbed either under the action of the ion beam or of the heat treatment at 600 °C, in the second, hydrogen is lost only after treatment at 900 °C. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 4106-4110 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The growth of a displacement field in single crystal silicon resulting from high dose hydrogen implantation and subsequent heat treatments has been investigated by MeV 4He+ Rutherford backscattering in channeling conditions, double crystal x-ray diffraction, and transmission electron microscopy. The results obtained in samples annealed for various times in the temperature range 220–350 °C have been explained in terms of a kinetic model which assumes the formation of clusters of hydrogen molecules. The growth of the displacement field is thermally activated with an activation energy of 0.50±0.05 eV, suggesting that the limiting process could be the release of hydrogen atoms bounded to defects created by ion implantation. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 3528-3533 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A study of the solid phase epitaxial growth from amorphous phase of a strained GexSi1−x thin layer made by 74Ge+ ion implantation of (100) Si is presented. Ge peak concentration is 6.4 at. %. Principally employed techniques are time-resolved reflectivity for crystallization rate measurements and cross sectional transmission electron microscopy (TEM) for interface morphology imaging. The kinetics is heavily affected by the mismatch stress induced by the Ge; the experimental data cannot however be explained considering only the average stress along the amorphous-crystal interface and another mechanism is required. Cross sectional TEM observations of partially crystallized samples reveal the tendency of the interface to roughen with an evolution reflected in the crystallization activation energy. Such roughness is assumed to affect the kinetics by locally enhancing the interface stress. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 84 (1998), S. 4802-4808 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The modifications induced in single-crystal silicon by implanted helium have been investigated by ion beam techniques. The damage has been detected by 2 MeV 4He+ backscattering in channeling conditions and the helium in-depth distribution by 7 and 8 MeV 15N++ elastic recoil scattering. The samples prepared by implanting 2×1016 cm−2 helium ions at 20 keV in silicon wafers held either at 77 K (LNT sample) or at 300 K (RT sample) have been heat treated for 2 h in the 100–800 °C temperature range. In the as-implanted LNT sample the damage maximum is at 130±20 nm and shifts in-depth to 180±10 nm after annealing at 200 °C, in the as-implanted RT sample, the damage maximum is already located at 180±10 nm. In the 250–500 °C temperature range, the LNT and RT samples follow the same annealing path with only slight differences in the temperature values; in both cases, the dechanneling signal increases and reaches a maximum value of nonregistered silicon atoms of 2.2–2.5×1022 at/cm3. In the same temperature range, the helium signal becomes narrower, builds up in a region centered on 220±20 nm and no appreciable loss of helium can be detected. The growth of the damage is consistent with the creation of cracks and a etherogenous distribution of bubbles filled with high pressure helium which stress the lattice; for the channeling Rutherford backscattering technique, their action is similar to silicon interstitials. At temperatures above 500 °C, helium is released from the samples; this process is associated with a decrease of the damage and the formation and increase in size of voids. At 900 °C empty voids with a diameter around 20 nm are found. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 1401-1408 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The interaction of helium atoms with the radiation damage imparted to (100) silicon single crystal by He+ implantation at 5×1015 cm−2, 20 keV, and liquid–nitrogen temperature is investigated by means of various complementary techniques during and after thermal treatments. Thermal programmed desorption was used to study the dissociation kinetics of helium from the defects and to plan suitable heat treatments for the other techniques. The helium profiles were determined by 8 MeV 15N2+ elastic recoil detection, quantitative data on damage were obtained by channeling Rutherford backscattering spectrometry, double crystal x-ray diffraction, and positron annihilation spectroscopy. Isothermal treatments at 250 °C produce first helium redistribution and trapping in vacancy-like defects, rather than helium desorption from traps. The process is thermally activated with an effective activation energy, dispersed in a band from 1.1 to about 1.7 eV. For higher temperature treatments (2 h at 500 °C) the traps are almost emptied and at 700 °C all vacancy-like defects are annealed out. No bubbles or voids are observed by transmission electron microscopy, either in the as-implanted or in annealed samples. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 2870-2872 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Thermal desorption spectrometry has been applied to investigate the blistering and exfoliation phenomena which occur at the surface of a p-type (100) silicon wafer coimplanted with helium and deuterium. During the heat treatments in linear temperature ramp, an explosive emission of both gases occurs. The phenomenon is kinetically controlled with an effective activation energy of 1.3±0.2 eV. In addition, the desorption spectra present a second contribution, attributed to deuterium emission from buried cavities. Also in this case, the process is kinetically controlled with an effective activation energy of 1.9±0.3 eV. Thermal desorption spectrometry is a suitable technique to have information about various phenomena which occur during blistering and exfoliation. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 67 (1995), S. 3447-3449 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Visible photoluminescence has been observed at cryogenic temperatures from crystalline Si bombarded with He and exposed to H either as plasma or gas in the 250–450 °C temperature range. The experimental results are consistent with the formation of Si nanoparticles produced by He segregation, which is responsible for exciton localization, and H passivation of the nonradiative recombination centers. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 65 (1994), S. 454-456 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Luminescence at an energy higher than the Si band-gap energy has been observed following H implantation and annealing treatments of Si samples. This phenomenon is discussed considering the damage caused by the H implantation and its evolution with thermal treatments. No definitive answer on the origin of the luminescence is given but various possible models are proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0630
    Keywords: 61.80 ; 68.55
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract 30 keV boron ions are implanted at doses of 2×1014 and 2×1015 cm−2 in 〈100〉 silicon wafers kept at room or liquid-nitrogen temperatures. The samples are analyzed by double-crystal X-ray diffraction, transmission electron microscopy and secondary ion-mass spectrometry before and after furnace annealing at 800°C. The low-dose implant does not amorphize the substrate at any of the temperatures, and residual defects together with a remarkably enhanced boron diffusion are observed after annealing. The high-dose implant amorphizes the substrate only at low temperature. In this case, unlike the room-temperature implant, the absence of any residual defect, the incorporation of the dopant in substitutional position and a negligible profile braodening of boron are obtained after annealing. In principle, this process proves itself a promising step for the fabrication of p +/n shallow junctions with good electrical characteristics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1991-09-01
    Print ISSN: 0947-8396
    Electronic ISSN: 1432-0630
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...