ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-06
    Description: ZrTiO 4 crystallized in orthorhombic (o-) phase was stacked with an amorphous Yb 2 O 3 interfacial layer as the gate dielectric for Si-based p-MOSFETs. With thermal annealing after gate electrode, the gate stack with equivalent oxide thickness (EOT) of 0.82 nm achieves high dielectric quality by showing a low interface trap density (D it ) of 2.75 × 10 11  cm −2 eV −1 near the midgap and low oxide traps. Crystallization of ZrTiO 4 and post metal annealing are also proven to introduce very limited amount of metal induced gap states or interfacial dipole. The p-MOSFETs exhibit good sub-threshold swing of 75 mV/dec which is ascribed to the low D it value and small EOT. Owing to the Y 2 O 3 interfacial layer and smooth interface with Si substrate that, respectively, suppress phonon and surface roughness scattering, the p-MOSFETs also display high hole mobility of 49 cm 2 /V-s at 1 MV/cm. In addition, I on /I off ratio larger than 10 6 is also observed. From the reliability evaluation by negative bias temperature instability test, after stressing with an electric field of −10 MV/cm at 85 °C for 1000 s, satisfactory threshold voltage shift of 12 mV and sub-threshold swing degradation of 3% were obtained. With these promising characteristics, the Yb 2 O 3 /o-ZrTiO 4 gate stack holds the great potential for next-generation electronics.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: With the rapid development of global positioning technologies and the pervasiveness of intelligent mobile terminals, trajectory data have shown a sharp growth trend both in terms of data volume and coverage. In recent years, increasing numbers of LBS (location based service) applications have provided us with trajectory data services such as traffic flow statistics and user behavior pattern analyses. However, the storage and query efficiency of massive trajectory data are increasingly creating a bottleneck for these applications, especially for large-scale spatiotemporal query scenarios. To solve this problem, we propose a new spatiotemporal indexing method to improve the query efficiency of massive trajectory data. First, the method extends the GeoSOT spatial partitioning scheme to the time dimension and forms a global space–time subdivision scheme. Second, a novel multilevel spatiotemporal grid index, called the GeoSOT ST-index, was constructed to organize trajectory data hierarchically. Finally, a spatiotemporal range query processing method is proposed based on the index. We implement and evaluate the index in MongoDB. By comparing the range query efficiency and scalability of our index with those of the other two space–time composite indexes, we found that our approach improves query efficiency levels by approximately 40% and has better scalability under different data volumes.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...