ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
  • American Meteorological Society  (1)
  • Copernicus  (1)
  • 2000-2004  (4)
  • 1975-1979
  • 2001  (4)
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 1214-1232 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The mechanism of the reaction CH4+O(1D2)→CH3+OH was investigated by ultrafast, time-resolved and state-resolved experiments. In the ultrafast experiments, short ultraviolet pulses photolyzed ozone in the CH4⋅O3 van der Waals complex to produce O(1D2). The ensuing reaction with CH4 was monitored by measuring the appearance rate of OH(v=0,1;J,Ω,Λ) by laser-induced fluorescence, through the OH A←X transition, using short probe pulses. These spectrally broad pulses, centered between 307 and 316 nm, probe many different OH rovibrational states simultaneously. At each probe wavelength, both a fast and a slow rise time were evident in the fluorescence signal, and the ratio of the fast-to-slow signal varied with probe wavelength. The distribution of OH(v,J,Ω,Λ) states, Pobs(v,J,Ω,Λ), was determined by laser-induced fluorescence using a high-resolution, tunable dye laser. The Pobs(v,J,Ω,Λ) data and the time-resolved data were analyzed under the assumption that different formation times represent different reaction mechanisms and that each mechanism produces a characteristic rovibrational distribution. The state-resolved and the time-resolved data can be fit independently using a two-mechanism model: Pobs(v,J,Ω,Λ) can be decomposed into two components, and the appearance of OH can be fit by two exponential rise times. However, these independent analyses are not mutually consistent. The time-resolved and state-resolved data can be consistently fit using a three-mechanism model. The OH appearance signals, at all probe wavelengths, were fit with times τfast(approximate)0.2 ps, τinter(approximate)0.5 ps and τslow(approximate)5.4 ps. The slowest of these three is the rate for dissociation of a vibrationally excited methanol intermediate (CH3OH*) predicted by statistical theory after complete intramolecular energy redistribution following insertion of O(1D2) into CH4. The Pobs(v,J,Ω,Λ) was decomposed into three components, each with a linear surprisal, under the assumption that the mechanism producing OH at a statistical rate would be characterized by a statistical prior. Dissociation of a CH4O* intermediate before complete energy randomization was identified as producing OH at the intermediate rate and was associated with a population distribution with more rovibrational energy than the slow mechanism. The third mechanism produces OH promptly with a cold rovibrational distribution, indicative of a collinear abstraction mechanism. After these identifications were made, it was possible to predict the fraction of signal associated with each mechanism at different probe wavelengths in the ultrafast experiment, and the predictions proved consistent with measured appearance signals. This model also reconciles data from a variety of previous experiments. While this model is the simplest that is consistent with the data, it is not definitive for several reasons. First, the appearance signals measured in these experiments probe simultaneously many OH(v,J,Ω,Λ) states, which would tend to obfuscate differences in the appearance rate of specific rovibrational states. Second, only about half of the OH(v,J,Ω,Λ) states populated by this reaction could be probed by laser-induced fluorescence through the OH A←X band with our apparatus. Third, the cluster environment might influence the dynamics compared to the free bimolecular reaction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 4132-4138 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The collision-induced electronic energy transfer that occurs when I2 in the E(0g+) ion-pair electronic state collides with ground electronic state I2 has been investigated. We prepare I2 in single rotational levels in v=0 of the E state using two-color double resonance laser excitation. The resulting emission spectrum shows that the nearby (ΔTe=−385 cm−1) D(0u+) electronic state is populated. The cross section for collision-induced E→D energy transfer is found to be 18±3 Å2. A range of D state vibrational levels are populated, consistent with a model in which overlap between the initial and final vibrational wave functions is important, but modulated by propensities for small vibrational energy gaps and those energy gaps that are closely matched to the v=0→v=1 energy separation in the I2(X) collision partner. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-08-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-03-31
    Description: The earliest known drawing of sunspots appears in The Chronicle of John of Worcester, which was compiled in the first half of the twelfth century. In this medieval chronicle, the Latin text describing the sunspots is accompanied by a colourful drawing, albeit idealised, which shows the apparent positions and sizes of two sunspots on the solar disk. The date of this observation of sunspots from Worcester, England is firmly established as AD 1128 December 8. Assuming that the drawing was prepared fairly carefully, the angular diameters of the two sunspots are at least about 3 arcmin and 2 arcmin in the northern and southern hemispheres, respectively. Similarly, the heliographic latitudes of both sunspots are within the approximate range of 25°–35°. About five days after this observation of sunspots on the solar disk, on the night of AD 1128 December 13, a red auroral display was observed from Songdo, Korea (the modern city of Kaesong). This auroral observation was recorded in the Koryo-sa, the official Korean chronicle of the period. In addition, five Chinese and five Korean descriptions of auroral displays were recorded in various East-Asian histories between the middle of AD 1127 and the middle of AD 1129. The ten oriental auroral records in this particular interval correspond to six distinct auroral events, which provide evidence for recurrent, though possibly intermittent, auroral activity on a timescale almost exactly equal to the synodic-solar-rotation period (approximately 27 days). The six distinct auroral events were apparently associated with two series of recurrent geomagnetic storms, both of which were sufficiently intense to produce mid-latitude auroral displays in East Asia. These ancient solar and auroral observations are interpreted in terms of present-day understanding of solar-terrestrial physics. Con-temporary ground-based and satellite measurements during the last few decades have indicated that recurrent geomagnetic storms are usually a feature of the declining phase of the solar cycle. In addition, the strength of such recurrent geomagnetic storms has been classified as moderate rather than intense. The recurrent geomagnetic storms occurring during the interval AD 1127–1129 must have been sufficiently intense to produce mid-latitude auroral displays over China and Korea, some of which appeared or extended south of the observing site. This last statement remains true even after proper allowance is made for the fact that during the twelfth century, the north geomagnetic pole was probably situated at the usual high geographic latitude, but in the same geographic longitude range as East Asia. Therefore, it may be inferred that the two series of intense recurrent geomagnetic storms occurred near a medieval maximum in the "eleven-year" solar cycle. Moreover, the overall level of solar activity appears to have been especially high at the end of the second decade of the twelfth century.b〉Key words. Magnetospheric physics (auroral phenomena; storms and substorms) – Solar physics, astrophysics and astronomy (photosphere and chromosphere)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...