ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (10)
  • American Institute of Physics (AIP)  (10)
  • 2015-2019  (10)
  • 2005-2009
  • Physics of Plasmas  (10)
  • 1812
Sammlung
  • Artikel  (10)
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
Thema
  • 1
    facet.materialart.
    Unbekannt
    American Institute of Physics (AIP)
    Publikationsdatum: 2016-06-23
    Beschreibung: Heating of collisionless plasmas in closed adiabatic magnetic cycle comprising of a quasi static compression followed by a non quasi static constrained expansion against a constant external pressure is proposed. Thermodynamic constraints are derived to show that the plasma always gains heat in cycles having at least one non quasi static process. The turbulent relaxation of the plasma to the equilibrium state at the end of the non quasi static expansion is discussed and verified via 1D Particle in Cell (PIC) simulations. Applications of this scheme to heating plasmas in open configurations (mirror machines) and closed configurations (tokamak, reverse field pinche) are discussed.
    Print ISSN: 1070-664X
    Digitale ISSN: 1089-7674
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2015-06-06
    Beschreibung: Interactions of two Li plasma plumes and shock waves are investigated at various pressures (∼10 −5 to 3 mbar) in the argon gas ambient. Fast imaging and optical emission spectroscopy are used to study the plume dynamics and characteristic emission of plasmas. The plasma plumes are created in laser-blow-off geometry. The expansion of plasma plumes in the ambient gas leads to the formation of an interaction zone. The formation of interaction zone is dependent on the ambient pressure and below a certain pressure, no significant change is observed in the shape and size of the interaction plasma. In the higher pressure, formation of interaction zone and its shape are dependent on ambient pressure. Dynamics of seed plasmas and interaction zone are also affected by the shock-shock interactions. The shock-shock interaction depends on the angle of incidence (α) between two shock waves at the initial time of interaction but as the plumes expand, the shock-shock interaction does not follow α dependence.
    Print ISSN: 1070-664X
    Digitale ISSN: 1089-7674
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2015-02-07
    Beschreibung: The propagation of large amplitude ion-acoustic solitons is studied in the laboratory frame ( x , t ) using a 1-D particle-in-cell code that evolves the ion dynamics by treating them as particles but assumes the electrons to follow the usual Boltzmann distribution. It is observed that for very low Mach numbers the simulation results closely match the Korteweg-de Vries soliton solutions, obtained in the wave frame, and which propagate without distortion. The collision of two such profiles is observed to exhibit the usual solitonic behaviour. As the Mach number is increased, the given profile initially evolves and then settles down to the exact solution of the full non-linear Poisson equation, which then subsequently propagates without distortion. The fractional change in amplitude is found to increase linearly with Mach number. It is further observed that initial profiles satisfying k 2 λ d e 2 〈 1 break up into a series of solitons.
    Print ISSN: 1070-664X
    Digitale ISSN: 1089-7674
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2015-07-16
    Beschreibung: Excitation of wakefield in a cold homogeneous plasma, driven by an ultra-relativistic electron beam is studied in one dimension using fluid simulation techniques. For a homogeneous rigid beam having density ( n b ) less than or equal to half the plasma density ( n 0 ), simulation results are found to be in good agreement with the analytical work of Rosenzweig [Phys. Rev. Lett. 58 , 555 (1987)]. Here, Rosenzweig's work has been analytically extended to regimes where the ratio of beam density to plasma density is greater than half and results have been verified using simulation. Further in contrast to Rosenzweig's work, if the beam is allowed to evolve in a self-consistent manner, several interesting features are observed in simulation viz. splitting of the beam into beam-lets (for l b  〉  λ p ) and compression of the beam (for l b  
    Print ISSN: 1070-664X
    Digitale ISSN: 1089-7674
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2015-12-08
    Beschreibung: The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.
    Print ISSN: 1070-664X
    Digitale ISSN: 1089-7674
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2016-08-13
    Beschreibung: Space-time evolution of a relativistic electron beam driven wake-field in a cold, homogeneous plasma is studied using 1D-fluid simulation techniques. It is observed that the wake wave gradually evolves and eventually breaks, exhibiting sharp spikes in the density profile and sawtooth like features in the electric field profile [Bera et al ., Phys. Plasmas 22 , 073109 (2015)]. It is shown here that the excited wakefield is a longitudinal Akhiezer-Polovin mode [A. I. Akhiezer and R. V. Polovin, Sov. Phys. JETP 3 , 696 (1956)] and its steepening (breaking) can be understood in terms of phase mixing of this mode, which arises because of relativistic mass variation effects. Further, the phase mixing time (breaking time) is studied as a function of beam density and beam velocity and is found to follow the well known scaling presented by Mukherjee and Sengupta [Phys. Plasmas 21 , 112104 (2014)].
    Print ISSN: 1070-664X
    Digitale ISSN: 1089-7674
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    American Institute of Physics (AIP)
    Publikationsdatum: 2016-10-15
    Beschreibung: Spatio-temporal evolution of the relativistic Buneman instability has been investigated in one dimension using an in-house developed particle-in-cell simulation code. Starting from the excitation of the instability, its evolution has been followed numerically till its quenching and beyond. The simulation results have been quantitatively compared with the fluid theory and are found to be in conformity with the well known fact that the maximum growth rate ( γ max ) reduces due to relativistic effects and varies with γ e 0 and m/M as γ m a x ∼ 3 2 γ e 0 ( m 2 M ) 1 / 3 , where γ e 0 is the Lorentz factor associated with the initial electron drift velocity ( v 0 ) and (m/M) is the electron to ion mass ratio. Further it is observed that in contrast to the non-relativistic results [A. Hirose, Plasma Phys. 20 , 481 (1978)] at the saturation point, the ratio of electrostatic field energy density ( ∑ k | E k | 2 / 8 π ) to initial drift kinetic energy density ( W 0 ) scales with γ e 0 as ∼ 1 / γ e 0 2 . This novel result on the scaling of energy densities has been found to be in quantitative agreement with the scalings derived using fluid theory.
    Print ISSN: 1070-664X
    Digitale ISSN: 1089-7674
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2016-10-19
    Beschreibung: This paper is a simulation based investigation of the effect of elastic collisions and effectively elastic-like excitation collisions between electrons and background neutrals on the dynamics of a cylindrically trapped electron cloud that also has an ion contaminant mixed in it. A cross section of the trapped non neutral cloud composed of electrons mixed uniformly with a fractional population of ions is loaded on a 2D PIC grid with the plasma in a state of unstable equilibrium due to differential rotation between the electron and the ion component. The electrons are also loaded with an axial velocity component, v z , that mimics their bouncing motion between the electrostatic end plugs of a Penning-Malmberg trap. This v z loading facilitates 3D elastic and excitation collisions of the electrons with background neutrals under a MCC scheme. In the present set of numerical experiments, the electrons do not ionize the neutrals. This helps in separating out only the effect of non-ionizing collisions of electrons on the dynamics of the cloud. Simulations reveal that these non-ionizing collisions indirectly influence the ensuing collisionless ion resonance instability of the contaminated electron cloud by a feedback process. The collisional relaxation reduces the average density of the electron cloud and thereby increases the fractional density of the ions mixed in it. The dynamically changing electron density and fractional density of ions feed back on the ongoing ion-resonance (two-stream) instability between the two components of the nonneutral cloud and produce deviations in the paths of progression of the instability that are uncorrelated at different background gas pressures. Effects of the collisions on the instability are evident from alteration in the growth rate and energetics of the instability caused by the presence of background neutrals as compared to a vacuum background. Further in order to understand if the non-ionizing collisions can independently be a cause of destabilization of an electron cloud, a second set of numerical experiments were performed with pure electron plasmas making non-ionizing collisions with different densities of background neutrals. These experiments reveal that the nature of potential energy extraction from the electron cloud by the non-ionizing collisions is not similar to the potential energy extraction of other destabilizing processes, e.g., a resistive wall instability. This difference in the energy extraction process renders these non-ionizing collisions incapable of independently triggering an instability of the cloud.
    Print ISSN: 1070-664X
    Digitale ISSN: 1089-7674
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2015-07-22
    Beschreibung: Numerical experiments have been performed to investigate the linear and nonlinear dynamics, and energetics of the ion resonance instability in cylindrically confined nonneutral plasma. The instability is excited on a set of parametrically different unstable equilibria of a cylindrical nonneutral cloud, composed of electrons partially neutralized by a much heavier ion species of single ionization. A particle-in-cell code has been developed and employed to carry out these simulations. The results obtained from the initial exponential growth phase of the instability in these numerical experiments are in agreement with the linearised analytical model of the ion resonance instability. As the simulations delve much further in time beyond the exponential growth phase, very interesting nonlinear phenomena of the ion resonance instability are revealed, such as a process of simultaneous wave breaking of the excited poloidal mode on the ion cloud and pinching of the poloidal perturbations on the electron cloud. This simultaneous nonlinear dynamics of the two components is associated with an energy transfer process from the electrons to the ions. At later stages there is heating induced cross-field transport of the heavier ions and tearing across the pinches on the electron cloud followed by an inverse cascade of the torn sections.
    Print ISSN: 1070-664X
    Digitale ISSN: 1089-7674
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2016-09-23
    Beschreibung: Phase mixing of relativistically intense longitudinal wave packets in a cold homogeneous unmagnetized plasma has been studied analytically and numerically using the Dawson Sheet Model. A general expression for phase mixing time ( ω p t m i x ) as a function of amplitude of the wave packet ( δ ) and width of the spectrum ( Δ k / k ) has been derived. It is found that the phase mixing time crucially depends on the relative magnitude of amplitude “ δ ” and the spectral width “ Δ k / k ”. For Δ k / k ≤ 2 ω p 2 δ 2 / c 2 k 2 ,   ω p t m i x scales with δ as ∼ 1 / δ 5 , whereas for Δ k / k 〉 2 ω p 2 δ 2 / c 2 k 2 ,   ω p t m i x scales with δ as ∼ 1 / δ 3 , where ω p is the non-relativistic plasma frequency and c is the speed of light in vacuum. We have also verified the above theoretical scalings using numerical simulations based on the Dawson Sheet Model.
    Print ISSN: 1070-664X
    Digitale ISSN: 1089-7674
    Thema: Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...