ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(6), ISSN: 0094-8276
    Publication Date: 2024-03-18
    Description: Understanding the material properties and physical conditions of basal ice is crucial for a comprehensive understanding of Antarctic ice‐sheet dynamics. Yet, direct data are sparse and difficult to acquire. Here, we employ ultra‐wideband radar to map high‐backscatter zones near the glacier bed within East Antarctica's Jutulstraumen drainage basin. Our backscatter analysis reveals that the basal ice in an area of ∼10,000 km² is composed of along‐flow oriented sediment‐laden basal ice units connected to the basal substrate, extending up to several hundred meters thick. Three‐dimensional thermomechanical modeling supports that these units form via basal freeze‐on of subglacial water that originated from further upstream. Our findings suggest that basal freeze‐on, and the entrainment and transport of subglacial material play a significant role in an accurate representation of material, physical, and rheological properties of the Antarctic ice sheet's basal ice, ultimately enhancing the accuracy and reliability of ice‐sheet modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(6), ISSN: 0094-8276
    Publication Date: 2024-03-18
    Description: Understanding the material properties and physical conditions of basal ice is crucial for a comprehensive understanding of Antarctic ice‐sheet dynamics. Yet, direct data are sparse and difficult to acquire. Here, we employ ultra‐wideband radar to map high‐backscatter zones near the glacier bed within East Antarctica's Jutulstraumen drainage basin. Our backscatter analysis reveals that the basal ice in an area of ∼10,000 km² is composed of along‐flow oriented sediment‐laden basal ice units connected to the basal substrate, extending up to several hundred meters thick. Three‐dimensional thermomechanical modeling supports that these units form via basal freeze‐on of subglacial water that originated from further upstream. Our findings suggest that basal freeze‐on, and the entrainment and transport of subglacial material play a significant role in an accurate representation of material, physical, and rheological properties of the Antarctic ice sheet's basal ice, ultimately enhancing the accuracy and reliability of ice‐sheet modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 51(6), ISSN: 0094-8276
    Publication Date: 2024-03-18
    Description: Understanding the material properties and physical conditions of basal ice is crucial for a comprehensive understanding of Antarctic ice‐sheet dynamics. Yet, direct data are sparse and difficult to acquire. Here, we employ ultra‐wideband radar to map high‐backscatter zones near the glacier bed within East Antarctica's Jutulstraumen drainage basin. Our backscatter analysis reveals that the basal ice in an area of ∼10,000 km² is composed of along‐flow oriented sediment‐laden basal ice units connected to the basal substrate, extending up to several hundred meters thick. Three‐dimensional thermomechanical modeling supports that these units form via basal freeze‐on of subglacial water that originated from further upstream. Our findings suggest that basal freeze‐on, and the entrainment and transport of subglacial material play a significant role in an accurate representation of material, physical, and rheological properties of the Antarctic ice sheet's basal ice, ultimately enhancing the accuracy and reliability of ice‐sheet modeling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...