ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: To determine the environmental impact of oil-combustion pollutants and soil dust on a lichen, we examined the spectral reflectance of thalli of the epiphytic fruticose lichen, Ramalina duriaei, expressed as values of NDVI (the normalized difference vegetation index). We analyzed electrolyte leakage caused by degradation of cell membranes in terms of electric conductivity of water, apart from chlorophyll degradation, the latter expressed as changes in the A435 nm/A415 nm ratio to indicate the physiological status of the lichen. The concentrations of Al, Cr, Fe, K, Ni, P, sulfate-S, Ti and V in the lichen thallus were measured to quantify the degree of pollution. Thalli of R. duriaei, growing in a nature reserve on the periphery of a 40-year-old industrial town, Ashdod, in southwest Israel were compared with thalli of R. duriaei from an unpolluted forest in the northeastern part of the country transplanted to the polluted areas in and around the town. After an exposure for 10 months, many transplants exhibited lower NDVI values, higher electric conductivity values as well as a lower A435 nm/A415 nm ratio. The three physical/physiological parameters thus reflected severe injury in the lichen transplants. The concentrations of Al, Cr, Fe, Ni, sulfate-S, Ti and V in the lichen transplants were found to correlate inversely with the NDVI values, whereas the concentrations of Fe, Ni, Ti and V were found to correlate with electric conductivity. The decrease in the A435 nm/A415 nm ratio was found to correlate with high concentrations of Al, Fe, Ni, sulfate-S, Ti and V in the lichen transplants, whereas the concentration of K and P correlated with both the NDVI value and the A435 nm/A415 nm ratio. It is concluded that in situ thalli of R. duriaei, the only indigenous fruticose lichen growing in the region of Ashdod, are endangered by the presence of pollutants and by acid rain due to the combustion of heavy fuel oil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: In the face of rapid global change it is imperative to preserve geodiversity for the overall conservation of biodiversity. Geodiversity is important for understanding complex biogeochemical and physical processes and is directly and indirectly linked to biodiversity on all scales of ecosystem organization. Despite the great importance of geodiversity, there is a lack of suitable monitoring methods. Compared to conventional in-situ techniques, remote sensing (RS) techniques provide a pathway towards cost-effective, increasingly more available, comprehensive, and repeatable, as well as standardized monitoring of continuous geodiversity on the local to global scale. This paper gives an overview of the state-of-the-art approaches for monitoring soil characteristics and soil moisture with unmanned aerial vehicles (UAV) and air- and spaceborne remote sensing techniques. Initially, the definitions for geodiversity along with its five essential characteristics are provided, with an explanation for the latter. Then, the approaches of spectral traits (ST) and spectral trait variations (STV) to record geodiversity using RS are defined. LiDAR (light detection and ranging), thermal and microwave sensors, multispectral, and hyperspectral RS technologies to monitor soil characteristics and soil moisture are also presented. Furthermore, the paper discusses current and future satellite-borne sensors and missions as well as existing data products. Due to the prospects and limitations of the characteristics of different RS sensors, only specific geotraits and geodiversity characteristics can be recorded. The paper provides an overview of those geotraits.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: The role played by unsustainable resource management in initiating international conflicts is well documented. The Syrian Civil War, commencing in March 2011, presents such a case. The prevailing opinion links the unrest with sequential droughts occurring from 2007–2010. Our research, however, reveals that the winter-rainfed agricultural conditions before 2011, as detected by satellite-derived vegetation indices, were similar and even better for Syrian farmers than for those of their Turkish counterparts across the border. Concurrently, summer-irrigated crops, heavily dependent on Euphrates River water originating from Turkey, notably declined in Syria while flourishing in Turkey. These findings are firmly supported by other independent and validated datasets, including long-term cross-border discharge, the water level in Syrian and Turkish reservoirs, and transborder groundwater flow. We conclude that the Turkish policy of unilaterally diverting the Euphrates water was the main reason for the agricultural collapse and subsequent instability in Syria in 2011. The obvious inference is that while prolonged drought exacerbated conditions, unsustainable anthropogenic water management in Turkey was the proximate cause behind the Syrian uprising.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Invasive plant species (IPS) are the second biggest threat to biodiversity after habitat loss. Since the spatial extent of IPS is essential for managing the invaded ecosystem, the current study aims at identifying and mapping the aggressive IPS of Acacia salicina and Acacia saligna, to understand better the key factors influencing their distribution in the coastal plain of Israel. This goal was achieved by integrating airborne-derived hyperspectral imaging and multispectral earth observation for creating species distribution maps. Hyperspectral data, in conjunction with high spatial resolution species distribution maps, were used to train the multispectral images at the species level. We incorporated a series of statistical models to classify the IPS location and to recognize their distribution and density. We took advantage of the phenological flowering stages of Acacia trees, as obtained by the multispectral images, for the support vector machine classification procedure. The classification yielded an overall Kappa coefficient accuracy of 0.89. We studied the effect of various environmental and human factors on IPS density by using a random forest machine learning model, to understand the mechanisms underlying successful invasions, and to assess where IPS have a higher likelihood of occurring. This algorithm revealed that the high density of Acacia most closely related to elevation, temperature pattern, and distances from rivers, settlements, and roads. Our results demonstrate how the integration of remote-sensing data with different data sources can assist in determining IPS proliferation and provide detailed geographic information for conservation and management efforts to prevent their future spread.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018
    Description: Knowledge of baseline water use for irrigated crops in the U.S. Southwest is important for understanding how much water is consumed under normal farm management and to help manage scarce resources. Remote sensing of evapotranspiration (ET) is an effective way to gain that knowledge: multispectral data can provide synoptic and time-repetitive estimates of crop-specific water use, and could be especially useful for this arid region because of dominantly clear skies and minimal precipitation. Although multiple remote sensing ET approaches have been developed and tested, there is not consensus on which of them should be preferred because there are still few intercomparison studies within this environment. To help build the experience needed to gain consensus, a remote sensing study using three ET models was conducted over the Central Arizona Irrigation and Drainage District (CAIDD). Aggregated ET was assessed for 137 wheat plots (winter/spring crop), 183 cotton plots (summer crop), and 225 alfalfa plots (year-round). The employed models were the Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC), the Two Source Energy Balance (TSEB), and Vegetation Index ET for the US Southwest (VISW). Remote sensing data were principally Landsat 5, supplemented by Landsat 7, MODIS Terra, MODIS Aqua, and ASTER. Using district-wide model averages, seasonal use (excluding surface evaporation) was 742 mm for wheat, 983 mm for cotton, and 1427 mm for alfalfa. All three models produced similar daily ET for wheat, with 6–8 mm/day mid-season. Model estimates diverged for cotton and alfalfa sites. Considering ET over cotton, TSEB estimates were 9.5 mm/day, METRIC 6 mm/day, and VISW 8 mm/day. For alfalfa, the ET values from TSEB were 8.0 mm/day, METRIC 5 mm/day, and VISW 6 mm/day. Lack of local validation information unfortunately made it impossible to rank model performance. However, by averaging results from all of them, ET model outliers could be identified. They ranged from −10% to +18%, values that represent expected ET modeling discrepancies. Relative to the model average, standardized ET-estimators—potential ET (ET ∘ ), FAO-56 ET, and USDA-SW gravimetric-ET— showed still greater deviations, up to 35% of annual crop water use for summer and year-round crops, suggesting that remote sensing of actual ET could lead to significantly improved estimates of crop water use. Results from this study highlight the need for conducting multi-model experiments during summer-months over sites with independent ground validation.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Water and energy are recognized as the most influential climatic vegetation growth-limiting factors. These factors are usually measured from ground meteorological stations. However, since both vary in space, time, and scale, they can be assessed by satellite-derived biophysical indicators. Energy, represented by land surface temperature (LST), is assumed to resemble air temperature; and water availability, related to precipitation, is represented by the normalized difference vegetation index (NDVI). It is hypothesized that positive correlations between LST and NDVI indicate energy-limited conditions, while negative correlations indicate water-limited conditions. The current project aimed to quantify the spatial and seasonal (spring and summer) distributions of LST–NDVI relations over Europe, using long-term (2000–2017) MODIS images. Overlaying the LST–NDVI relations on the European biome map revealed that relations between LST and NDVI were highly diverse among the various biomes and throughout the entire study period (March–August). During the spring season (March–May), 80% of the European domain, across all biomes, showed the dominance of significant positive relations. However, during the summer season (June–August), most of the biomes—except the northern ones—turned to negative correlation. This study demonstrates that the drought/vegetation/stress spectral indices, based on the prevalent hypothesis of an inverse LST–NDVI correlation, are spatially and temporally dependent. These negative correlations are not valid in regions where energy is the limiting factor (e.g., in the drier regions in the southern and eastern extents of the domain) or during specific periods of the year (e.g., the spring season). Consequently, it is essential to re-examine this assumption and restrict applications of such an approach only to areas and periods in which negative correlations are observed. Predicted climate change will lead to an increase in temperature in the coming decades (i.e., increased LST), as well as a complex pattern of precipitation changes (i.e., changes of NDVI). Thus shifts in plant species locations are expected to cause a redistribution of biomes.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: A spatially distributed land surface temperature is important for many studies. The recent launch of the Sentinel satellite programs paves the way for an abundance of opportunities for both large area and long-term investigations. However, the spatial resolution of Sentinel-3 thermal images is not suitable for monitoring small fragmented fields. Thermal sharpening is one of the primary methods used to obtain thermal images at finer spatial resolution at a daily revisit time. In the current study, the utility of the TsHARP method to sharpen the low resolution of Sentinel-3 thermal data was examined using Sentinel-2 visible-near infrared imagery. Compared to Landsat 8 fine thermal images, the sharpening resulted in mean absolute errors of ~1 °C, with errors increasing as the difference between the native and the target resolutions increases. Part of the error is attributed to the discrepancy between the thermal images acquired by the two platforms. Further research is due to test additional sites and conditions, and potentially additional sharpening methods, applied to the Sentinel platforms.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Vegetation state is usually assessed by calculating vegetation indices (VIs) derived from remote sensing systems where the near infrared (NIR) band is used to enhance the vegetation signal. However VIs are pixel-based and require both visible and NIR bands. Yet, most archived photographs were obtained with cameras that record only the three visible bands. Attempts to construct VIs with the visible bands alone have shown only limited success, especially in drylands. The current study identifies vegetation patches in the hyperarid Israeli desert using only the visible bands from aerial photographs by adapting an alternative geospatial object-based image analysis (GEOBIA) routine, together with recent improvements in preprocessing. The preprocessing step selects a balanced threshold value for image segmentation using unsupervised parameter optimization. Then the images undergo two processes: segmentation and classification. After tallying modeled vegetation patches that overlap true tree locations, both true positive and false positive rates are obtained from the classification and receiver operating characteristic (ROC) curves are plotted. The results show successful identification of vegetation patches in multiple zones from each study area, with area under the ROC curve values between 0.72 and 0.83.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...