ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (3)
  • 1
  • 2
    Publication Date: 2017-12-01
    Description: Magnesium/calcium paleothermometry is an established tool for reconstructing past surface and deep-sea temperatures. However, our understanding of nonthermal environmental controls on the uptake of Mg into the calcitic lattice of foraminiferal tests remains limited. Here we present a combined analysis of multiple trace element/calcium ratios and stable isotope (δ18O and δ13C) geochemistry on the subpolar planktonic foraminifera Neogloboquadrina incompta to assess the validity of Mg/Ca as a proxy for surface ocean temperature. We identify small size-specific offsets in Mg/Ca and δ18Oc values for N. incompta that are consistent with depth habitat migration patterns throughout the life cycle of this species. Additionally, an assessment of nonthermal controls on Mg/Ca values reveals that (1) the presence of volcanic ash, (2) the addition of high-Mg abiotic overgrowths, and (3) ambient seawater carbonate chemistry can have a significant impact on the Mg/Ca-to-temperature relationship. For carbonate-ion concentrations of values 〉 200 μmol kg−1, we find that temperature exerts the dominant control on Mg/Ca values, while at values 〈 200 μmol kg−1 the carbonate-ion concentration of seawater increases the uptake of Mg, thereby resulting in higher-than-expected Mg/Ca values at low temperatures. We propose two independent correction schemes to remove the effects of volcanic ash and carbonate-ion concentration on Mg/Ca values in N. incompta within the calibration data set. Applying the corrections improves the fidelity of past ocean temperature reconstructions. © 2017. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA2207, doi:10.1029/2011PA002244.
    Description: At the peak of the previous interglacial period, North Atlantic and subpolar climate shared many features in common with projections of our future climate, including warmer-than-present conditions and a diminished Greenland Ice Sheet (GIS). Here we portray changes in North Atlantic hydrography linked with Greenland climate during Marine Isotope Stage (MIS) 5e using (sub)centennially sampled records of planktonic foraminiferal isotopes and assemblage counts and ice-rafted debris counts, as well as modern analog technique and Mg/Ca-based paleothermometry. We use the core MD03-2664 recovered from a high accumulation rate site (∼34 cm/kyr) on the Eirik sediment drift (57°26.34′N, 48°36.35′W). The results indicate that surface waters off southern Greenland were ∼3–5°C warmer than today during early MIS 5e. These anomalously warm sea surface temperatures (SSTs) prevailed until the isotopic peak of MIS 5e when they were interrupted by a cooling event beginning at ∼126 kyr BP. This interglacial cooling event is followed by a gradual warming with SSTs subsequently plateauing just below early MIS 5e values. A planktonic δ18O minimum during the cooling event indicates that marked freshening of the surface waters accompanied the cooling. We suggest that switches in the subpolar gyre hydrography occurred during a warmer climate, involving regional changes in freshwater fluxes/balance and East Greenland Current influence in the study area. The nature of these hydrographic transitions suggests that they are most likely related to large-scale circulation dynamics, potentially amplified by GIS meltwater influences.
    Description: This work is a contribution of the European Science Foundation EuroMARC program, through the AMOCINT project, funded through grants from the Research Council of Norway (RCN) and contributes to EU-FP7 IP Past4Future. N. Irvalı was additionally funded by an ESF EUROCORES Short-term Visit grant and a RCN Leiv Eiriksson mobility grant to support research stays at the University of Edinburgh, UK, and Woods Hole Oceanographic Institution, USA, respectively, during which parts of the data for this paper were acquired. U. Ninnemann was funded by a University of Bergen Meltzer research grant.
    Description: 2012-11-12
    Keywords: Eirik Drift ; MIS 5e ; North Atlantic ; Last interglacial ; Multiproxy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...