ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L06410, doi:10.1029/2006GL025845.
    Description: We present a conceptual approach for evaluating the biological and hydrological controls of nutrient removal in different sized rivers within an entire river network. We emphasize a per unit area biological parameter, the nutrient uptake velocity (νf), which is mathematically independent of river size in benthic dominated systems. Standardization of biological parameters from previous river network models to νf reveals the nature of river size dependant biological activity in these models. We explore how geomorphic, hydraulic, and biological factors control the distribution of nutrient removal in an idealized river network, finding that larger rivers within a basin potentially exert considerable influence over nutrient exports.
    Description: This work was funded by NASA-IDS (NNG04GH75G), NSF-LTER OCE-9726921, and NOAA (NA17RJ2612- 344 to Princeton U.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 42 (2006): W03426, doi:10.1029/2005WR004131.
    Description: We assessed the effects of historical (1931-1998) changes in both land-use and climate on the water budget of a rapidly urbanizing watershed, Ipswich River basin (IRB), in northeastern Massachusetts. Water diversions and extremely low flow during summer are major issues in the IRB. Our study centers on a detailed analysis of diversions and a combined empirical/modeling treatment of evapotranspiration (ET) response to changes in climate and land-use. A detailed accounting of diversions showed that net diversions increased due to increases in water withdrawals (primarily ground water pumping) and export of sewage. Net diversions constitute a major component of runoff (20% of streamflow). Using a combination of empirical analysis and physically based modeling we related an increase in precipitation (2.7 mm/yr) and changes in other climate variables to an increase in ET (1.7 mm/yr). Simulations with a physically based water-balance model showed that the increase in ET could be attributed entirely to a change in climate, while the effect of land-use change was negligible. The land-use change effect was different from ET and runoff trends commonly associated with urbanization. We generalized these and other findings to predict future streamflow using climate change scenarios. Our study could serve as a framework for studying suburban watersheds, being the first study of a suburban watershed that addresses long-term effects of changes in both land-use and climate, and accounts for diversions and other unique aspects of suburban hydrology.
    Description: This research was partially supported by NSF grants (DEB-9726862, OCE-9726921 and OCE-0423565).
    Keywords: Water budgets ; Evapotranspiration ; Climate change ; Land-use change ; Urbanization ; Water-balance model ; Ipswich River
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 47 (2011): W00J10, doi:10.1029/2010WR009896.
    Description: Transient storage (TS) zones are important areas of dissolved inorganic nitrogen (DIN) processing in rivers. We assessed sensitivities regarding the relative impact that the main channel (MC), surface TS (STS), and hyporheic TS (HTS) have on network denitrification using a model applied to the Ipswich River in Massachusetts, United States. STS and HTS connectivity and size were parameterized using the results of in situ solute tracer studies in first- through fifth-order reaches. DIN removal was simulated in all compartments for every river grid cell using reactivity derived from Lotic Intersite Nitrogen Experiment (LINX2) studies, hydraulic characteristics, and simulated discharge. Model results suggest that although MC-to-STS connectivity is greater than MC-to-HTS connectivity at the reach scale, at basin scales, there is a high probability of water entering the HTS at some point along its flow path through the river network. Assuming our best empirical estimates of hydraulic parameters and reactivity, the MC, HTS, and STS removed approximately 38%, 21%, and 14% of total DIN inputs during a typical base flow period, respectively. There is considerable uncertainty in many of the parameters, particularly the estimates of reaction rates in the different compartments. Using sensitivity analyses, we found that the size of TS is more important for DIN removal processes than its connectivity with the MC when reactivity is low to moderate, whereas TS connectivity is more important when reaction rates are rapid. Our work suggests a network perspective is needed to understand how connectivity, residence times, and reactivity interact to influence DIN processing in hierarchical river systems.
    Description: This work was supported by the National Science Foundation through DEB- 0614282, BCS-0709685 and the Plum Island Long Term Ecological Research site (NSF OCE-0423565).
    Keywords: Biogeochemistry ; Denitrification ; Hydraulics ; Modeling ; River network ; Transient storage
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C10039, doi:10.1029/2009JC006085.
    Description: Wetland-estuarine-shelf interaction processes in the Plum Island Sound and Merrimack River system in the Massachusetts coast are examined using the high-resolution unstructured grid, finite volume, primitive equations, coastal ocean model. The computational domain covers the estuarine and entire intertidal area with a horizontal resolution of 10–200 m. Driven by five tidal constituents forcing at the open boundary on the inner shelf of the eastern coast of the Gulf of Maine, the model has successfully simulated the 3-D flooding/drying process, temporal variability, and spatial distribution of salinity as well as the water exchange flux through the water passage between the Plum Island Sound and Merrimack River. The model predicts a complex recirculation loop around the Merrimack River, shelf, and Plum Island Sound. During the ebb tide, salt water in the Plum Island Sound is injected into the Merrimack River, while during flood tide, a significant amount of the freshwater in the Merrimack River is forced into Plum Island Sound. This water exchange varies with the magnitude of freshwater discharge and wind conditions, with a maximum contribution of ∼30%–40% variability in salinity over tidal cycles in the mouth of the Merrimack River. Nonlinear tidal rectification results in a complex clockwise residual recirculation loop around the Merrimack River, shelf, and Plum Island Sound. The net water flux from Plum Island Sound to the Merrimack River varies with the interaction between tide, river discharge, and wind forcing. This interaction, in turn, affects the salt transport from this system to the shelf. Since the resulting water transport into the shelf significantly varies with the variability of the wind, models that fail to resolve this complex estuarine and shelf system could either overestimate or underestimate the salt content over the shelf.
    Description: The development of FVCOM is supported by NSF grants (OCE‐0234545, OCE‐0227679, OCE‐0606928, OCE‐ 0712903, OCE‐0726851, OCE‐0814505, ARC0712903, ARC0732084, and ARC0804029), MIT Sea Grant funds (2006‐RC‐103 and 2010‐R/ RC‐116) and NOAA NERACOOS Program for the UMASS team. C. Chen’s contribution is also supported by Shanghai Ocean University International Cooperation Program (No. A‐2302‐10‐0003), the Program of Science and Technology Commission of Shanghai Municipality (No. 09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (Project numbers: J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University (ECNU).
    Keywords: Plum Island Sound ; Merrimack River ; FVCOM ; Circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 47 (2011): W05509, doi:10.1029/2010WR009959.
    Description: Little is known about the impact of surface transient storage (STS) zones on reach-scale transport and the fate of dissolved nutrients in streams. Exchange with these locations may influence the rates of nutrient cycling often observed in whole-stream tracer experiments, particularly because they are sites of organic matter collection and lower flow velocities than those observed in the thalweg. We performed a conservative stream tracer experiment (slug of dissolved NaCl) in the Ipswich River in northeastern Massachusetts and collected solute tracer data both in the thalweg and adjacent STS zones at three locations in a fifth-order reach. Tracer time series observed in STS zones are an aggregate of residence time distributions (RTDs) of the upstream transport to that point (RTDTHAL) and that of the temporary storage within these zones (RTDSTS). Here we demonstrate the separation of these two RTDs to determine the RTDSTS specifically. Total residence times for these individual STS zones range from 4.5 to 7.5 h, suggesting that these zones have the potential to host important biogeochemical transformations in stream systems. All of the RTDSTS show substantial deviations from the ideal prescribed by the two-state (mobile/immobile) mass transfer equations. The deviations indicate a model mismatch and that parameter estimation based on the mass transfer equations will yield misleading values.
    Description: This research was funded by the National Science Foundation, grants DEB 06-14350 and EAR 07- 49035, and DOE grant DE-FG02-07ER15841.
    Keywords: Transient storage ; Residence time distributions ; Surface transient storage ; Mobile-immobile exchange ; Stream solute transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 40 (2004): W11201, doi:10.1029/2004WR003172.
    Description: We calculated N budgets and conducted nutrient uptake experiments to evaluate the fate of N in the aquatic environment of the Ipswich River basin, northeastern Massachusetts. A mass balance indicates that the basin retains about 50% of gross N inputs, mostly in terrestrial components of the landscape, and the loss and retention of total nitrogen (TN) in the aquatic environment was about 9% of stream loading. Uptake lengths of PO4 and NH4 were measurable in headwater streams, but NO3 uptake was below detection (minimum detection limit = 0.05 μM). Retention or loss of NO3 was observed in a main stem reach bordered by wetland habitat. Nitrate removal in urban headwater tributaries was because of water withdrawals and denitrification during hypoxic events and in ponded wetlands with long water residence times. A mass balance using an entire river network indicates that basin-wide losses due to aquatic denitrification are considerably lower than estimates from several recent studies and range from 4 to 16% of TDN in stream loading. Withdrawals for domestic use restrict the runoff of headwater catchments from reaching the main stem during low base flow periods, thereby contributing to the spatial and temporal regulation of N export from headwater tributaries.
    Description: This research was funded by grants DEB- 9726862 and OCE-9726921 (NSF).
    Keywords: Anthropogenic ; Land use ; Uptake ; Nitrogen ; Water quality
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 46 (2010): W06516, doi:10.1029/2009WR008222.
    Description: Transient storage of stream water and associated solutes is expected to vary along stream networks in response to related changes in stream hydraulic conditions and morphologic gradients. These spatial changes are relevant to a wide variety of processes (e.g., biogeochemical cycling), yet data regarding these dynamics are limited and almost exclusively confined to the general storage terms of transient storage models with a single-storage zone (1-SZ). We used a transient storage model with two-storage zones (2-SZ) to simulate field data from conservative solute injections conducted in a coastal stream network in Massachusetts to separately quantify surface transient storage (STS) and hyporheic transient storage (HTS). Solute tracer additions were performed at basin-wide, low-flow conditions, and results were compared with respect to stream size. Strong positive relationships with reach contributing area indicated that the size of the main channel and the size and residence time in surface and hyporheic storage zones all increased from small to large streams. Conversely, longitudinal dispersion and the storage zone exchange coefficients had no consistent trends downstream. The influence of storage exchange on median transport time ( $F_{MED}^{200}$) was consistently large for STS and negligible for HTS. When compared to 1-SZ model estimates, we found that the general 1-SZ model storage terms did not consistently describe either STS or HTS exchange. Overall our results indicated that many zone-specific (STS and HTS) storage dynamics were sensitive to the combination of hydraulic and morphologic gradients along the stream network and followed positive trends with stream size.
    Description: This material is based upon work supported by NSF grants DEB 06‐14350, BCS‐0709685, and OCE‐0423565.
    Keywords: Hyporheic zone ; Transient storage ; Two-storage zone model ; Stream network
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): G03038, doi:10.1029/2007JG000660.
    Description: River systems are dynamic, highly connected water transfer networks that integrate a wide range of physical and biological processes. We used a river network nitrogen (N) removal model with daily temporal resolution to evaluate how elevated N inputs, saturation of the denitrification and total nitrate removal processes, and hydrologic conditions interact to determine the amount, timing and distribution of N removal in the fifth-order river network of a suburban 400 km2 basin. Denitrification parameters were based on results from whole reach 15NO3 tracer additions. The model predicted that between 15 and 33% of dissolved inorganic nitrogen (DIN) inputs were denitrified annually by the river system. Removal approached 100% during low flow periods, even with the relatively low and saturating uptake velocities typical of surface water denitrification. Annual removal percentages were moderate because most N inputs occurred during high flow periods when hydraulic conditions and temperatures are less favorable for removal by channel processes. Nevertheless, the percentage of annual removal occurring during above average flow periods was similar to that during low flow periods. Predicted river network removal proportions are most sensitive to loading rates, spatial heterogeneity of inputs, and the form of the removal process equation during typical base flow conditions. However, comparison with observations indicates that removal by the river network is higher than predicted by the model at moderately high flows, suggesting additional removal processes are important at these times. Further increases in N input to the network will lead to disproportionate increases in N exports due to the limits imposed by process saturation.
    Description: This work was funded by NSF-DEB- 0614282, NSF-OCE-9726921, NSF-DEB-0111410, and NSF-BCS- 0709685.
    Keywords: Nitrogen ; Removal ; Saturation ; Hydrology ; Variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Geosciences , Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-04-25
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...