ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (3)
  • AAIW  (1)
  • Kuroshio Current
  • Last deglaciation
  • American Geophysical Union  (3)
Sammlung
  • Artikel  (3)
Datenquelle
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA4005, doi:10.1029/2004PA001061.
    Beschreibung: Detailed deglacial and Holocene records of planktonic δ18O and Mg/Ca–based sea surface temperature (SST) from the Okinawa Trough suggest that at ∼18 to 17 thousand years before present (kyr B.P.), late spring/early summer SSTs were approximately 3°C cooler than today, while surface waters were up to 1 practical salinity unit saltier. These conditions are consistent with a weaker influence of the summer East Asian Monsoon (EAM) than today. The timing of suborbital SST oscillations suggests a close link with abrupt changes in the EAM and North Atlantic climate. A tropical influence, however, may have resulted in subtle decoupling between the North Atlantic and the Okinawa Trough/EAM during the deglaciation. Okinawa Trough surface water trends in the Holocene are consistent with model simulations of an inland shift of intense EAM precipitation during the middle Holocene. Millennial-scale alternations between relatively warm, salty conditions and relatively cold, fresh conditions suggest varying influence of the Kuroshio during the Holocene.
    Beschreibung: Funding for this research was provided by NSFC (grants 40106006 and 40206007), SKLLQG (grant LLQG0204), and the NSF (OCE-020776 to DWO). Y.S.'s visit to WHOI was supported via a NSF START Fellowship.
    Schlagwort(e): Okinawa Trough ; Deglaciation ; Holocene ; Kuroshio Current ; East Asian monsoon ; Mg/Ca ; Oxygen isotopes ; Foraminifera
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-10-26
    Beschreibung: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology, 34(7), (2019): 1218-1233, doi:10.1029/2018PA003537.
    Beschreibung: The last deglaciation (~20–10 kyr BP) was characterized by a major shift in Earth's climate state, when the global mean surface temperature rose ~4 °C and the concentration of atmospheric CO2 increased ~80 ppmv. Model simulations suggest that the initial 30 ppmv rise in atmospheric CO2 may have been driven by reduced efficiency of the biological pump or enhanced upwelling of carbon‐rich waters from the abyssal ocean. Here we evaluate these hypotheses using benthic foraminiferal B/Ca (a proxy for deep water [CO32−]) from a core collected at 1,100‐m water depth in the Southwest Atlantic. Our results imply that [CO32−] increased by 22 ± 2 μmol/kg early in Heinrich Stadial 1, or a decrease in ΣCO2 of approximately 40 μmol/kg, assuming there were no significant changes in alkalinity. Our data imply that remineralized phosphate declined by approximately 0.3 μmol/kg during Heinrich Stadial 1, equivalent to 40% of the modern remineralized signal at this location. Because tracer inversion results indicate remineralized phosphate at the core site reflects the integrated effect of export production in the sub‐Antarctic, our results imply that biological productivity in the Atlantic sector of the Southern Ocean was reduced early in the deglaciation, contributing to the initial rise in atmospheric CO2.
    Beschreibung: We would like to thank Bärbel Hönisch at Lamont‐Doherty Earth Observatory of Columbia University for help with methods development and Sarah McCart for technical assistance with ICP‐MS analyses. We would also like to give special thanks to Anna lisa Mudahy, who was responsible for picking a substantial portion of the benthic foraminifera used in this study. We are grateful to the WHOI core lab for sample collection and archiving. This work was supported by NSF grant OCE‐1702231 to D. L.
    Beschreibung: 2020-01-24
    Schlagwort(e): B/Ca ; Last deglaciation ; Carbon cycling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA4101, doi:10.1029/2010PA001962.
    Beschreibung: Paleoceanographic studies using benthic foraminiferal Cd as a nutrient tracer have provided a robust means of reconstructing glacial Atlantic Ocean water mass geometry, but a paucity of data from the South Atlantic above 1200 m has limited investigation of Antarctic Intermediate Water (AAIW) configuration and formation. A new Cd depth profile from Brazil margin sediments suggests that AAIW penetrated northward at 1100 m to at least 27°S in the glacial Atlantic. It exhibited substantially reduced δ13Cas values, confirming preliminary evidence that this AAIW was unique to the glacial Atlantic and that it formed differently than today, with less atmospheric contact.
    Schlagwort(e): Cadmium ; Last glacial maximum ; Atlantic Ocean ; AAIW
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...