ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Last deglaciation  (1)
  • AAIW
  • American Geophysical Union  (1)
  • 2015-2019  (1)
Collection
  • Articles  (1)
Publisher
Years
Year
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology, 34(7), (2019): 1218-1233, doi:10.1029/2018PA003537.
    Description: The last deglaciation (~20–10 kyr BP) was characterized by a major shift in Earth's climate state, when the global mean surface temperature rose ~4 °C and the concentration of atmospheric CO2 increased ~80 ppmv. Model simulations suggest that the initial 30 ppmv rise in atmospheric CO2 may have been driven by reduced efficiency of the biological pump or enhanced upwelling of carbon‐rich waters from the abyssal ocean. Here we evaluate these hypotheses using benthic foraminiferal B/Ca (a proxy for deep water [CO32−]) from a core collected at 1,100‐m water depth in the Southwest Atlantic. Our results imply that [CO32−] increased by 22 ± 2 μmol/kg early in Heinrich Stadial 1, or a decrease in ΣCO2 of approximately 40 μmol/kg, assuming there were no significant changes in alkalinity. Our data imply that remineralized phosphate declined by approximately 0.3 μmol/kg during Heinrich Stadial 1, equivalent to 40% of the modern remineralized signal at this location. Because tracer inversion results indicate remineralized phosphate at the core site reflects the integrated effect of export production in the sub‐Antarctic, our results imply that biological productivity in the Atlantic sector of the Southern Ocean was reduced early in the deglaciation, contributing to the initial rise in atmospheric CO2.
    Description: We would like to thank Bärbel Hönisch at Lamont‐Doherty Earth Observatory of Columbia University for help with methods development and Sarah McCart for technical assistance with ICP‐MS analyses. We would also like to give special thanks to Anna lisa Mudahy, who was responsible for picking a substantial portion of the benthic foraminifera used in this study. We are grateful to the WHOI core lab for sample collection and archiving. This work was supported by NSF grant OCE‐1702231 to D. L.
    Description: 2020-01-24
    Keywords: B/Ca ; Last deglaciation ; Carbon cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...