ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AAIW  (2)
  • Oxygen isotope
  • American Geophysical Union  (2)
  • John Wiley & Sons  (1)
Collection
Publisher
  • American Geophysical Union  (2)
  • John Wiley & Sons  (1)
Years
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 32 (2017): 1036–1053, doi:10.1002/2017PA003092.
    Description: Antarctic Intermediate Water (AAIW) plays important roles in the global climate system and the global ocean nutrient and carbon cycles. However, it is unclear how AAIW responds to global climate changes. In particular, neodymium isotopic composition (εNd) reconstructions from different locations from the tropical Atlantic have led to a debate on the relationship between northward penetration of AAIW into the tropical Atlantic and the Atlantic meridional overturning circulation (AMOC) variability during the last deglaciation. We resolve this controversy by studying the transient oceanic evolution during the last deglaciation using a neodymium-enabled ocean model. Our results suggest a coherent response of AAIW and AMOC: when AMOC weakens, the northward penetration and transport of AAIW decrease while its depth and thickness increase. Our study highlights that as part of the return flow of the North Atlantic Deep Water, the northward penetration of AAIW in the Atlantic is determined predominately by AMOC intensity. Moreover, the inconsistency among different tropical Atlantic εNd reconstructions is reconciled by considering their corresponding core locations and depths, which were influenced by different water masses in the past. The very radiogenic water from the bottom of the Gulf of Mexico and the Caribbean Sea, which was previously overlooked in the interpretations of deglacial εNd variability, can be transported to shallow layers during active AMOC and modulates εNd in the tropical Atlantic. Changes in the AAIW core depth must also be considered. Thus, interpretation of εNd reconstructions from the tropical Atlantic is more complicated than suggested in previous studies.
    Description: NSF P2C2. Grant Numbers: NSF1401778, NSF1401802 DOE Grant Number: DE-SC0006744; NSFC Grant Numbers: 41630527, 41130105; Swiss National Science Foundation; WHOI Investing in Science Program; U.S. DOE the RGCM program; LDRD
    Description: 2018-04-24
    Keywords: AAIW ; AMOC ; Deglacial ; Neodymium isotope ; Paleocirculation tracer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA4101, doi:10.1029/2010PA001962.
    Description: Paleoceanographic studies using benthic foraminiferal Cd as a nutrient tracer have provided a robust means of reconstructing glacial Atlantic Ocean water mass geometry, but a paucity of data from the South Atlantic above 1200 m has limited investigation of Antarctic Intermediate Water (AAIW) configuration and formation. A new Cd depth profile from Brazil margin sediments suggests that AAIW penetrated northward at 1100 m to at least 27°S in the glacial Atlantic. It exhibited substantially reduced δ13Cas values, confirming preliminary evidence that this AAIW was unique to the glacial Atlantic and that it formed differently than today, with less atmospheric contact.
    Keywords: Cadmium ; Last glacial maximum ; Atlantic Ocean ; AAIW
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 37 (2010): L23603, doi:10.1029/2010GL045202.
    Description: Ice core records of polar temperatures and greenhouse gases document abrupt millennial-scale oscillations that suggest the reduction or shutdown of thermohaline Circulation (THC) in the North Atlantic Ocean may induce the abrupt cooling in the northern hemisphere. It remains unknown, however, whether the sea surface temperature (SST) is cooling or warming in the Kuroshio of the Northwestern Pacific during the cooling event. Here we present an AMS 14C-dated foraminiferal Mg/Ca SST record from the central Okinawa Trough and document that the SST variations exhibit two steps of warming since 21 ka — at 14.7 ka and 12.8 ka, and a cooling (∼1.5°C) during the interval of the Younger Dryas. By contrast, we observed no SST change or oceanic warming (∼1.5–2°C) during the episodes of Northern Hemisphere cooling between ∼21–40 ka. We therefore suggest that the “Antarctic-like” timing and amplitude of millennial-scale SST variations in the subtropical Northwestern Pacific between 20–40 ka may have been determined by rapid ocean adjustment processes in response to abrupt wind stress and meridional temperature gradient changes in the North Pacific.
    Description: This research was funded by the National Science Council (NSC), Taiwan to M.T.C. (NSC96‐2611‐M‐019‐008 and NSC96‐2611‐M‐019‐009) and C.C.S. (NSC98‐2611‐M002‐006). X.P.L. was supported by the Natural Science Foundation of China (40930844 and 40706006), China’s National Basic Research Priorities Programmer (2005CB422303 and 2007CB411804), 111 Project (B07036), and the Program for New Century Excellent Talents in University (NECT‐07‐0781).
    Keywords: Kuroshio ; Pacific ; Sea surface temperature ; Mg/Ca ; Oxygen isotope ; East Asian monsoon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...