ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-05
    Description: Methane-rich gas occurs in the total organic carbon–rich Alum Shale (Furongian to Lower Ordovician) in southern Sweden. The lower part of the thermally immature Alum Shale was impregnated by bitumen locally generated by heating from magmatic intrusions from the Carboniferous to the Permian. Organic geochemical data indicate that the migrated bitumen is slightly degraded. In the upper Alum Shale, where methane is the main hydrocarbon in thermovaporization experiments, centimeter-size calcite crystals occur that contain fluid inclusions filled with oil, gas, or water. The Alum Shale is thus considered a mixed shale oil–biogenic shale gas play. The presented working hypothesis to explain the biogenic methane occurrence considers that water-soluble bitumen components of the Alum Shale were converted to methane. A hydrogeochemical modeling approach allows the quantitative retracing of inorganic reactions triggered by oil degradation. The modeling results reproduce the present-day gas and mineralogical composition. The conceptual model applied to explain the methane occurrence in the Alum Shale in southern Sweden resembles the formation of biogenic methane in the Antrim Shale (Michigan Basin, United States). In both models, melting water after the Pleistocene glaciation and modern meteoric water may have diluted the contents of total dissolved solids (TDS) in basinal brines. Such pore waters with low TDS contents create a subsurface aqueous environment favorable for microbes that have the potential to form biogenic methane. Today, biogenic methane production rates, with shale as the substrate using different hydrocarbon-degrading microbial enrichment cultures in incubation experiments, range from 10 to 620 nmol per gram and per day.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-03
    Description: Oil degradation in the Gullfaks field led to hydrogeochemical processes that caused high CO 2 partial pressure and a massive release of sodium into the formation water. Hydrogeochemical modeling of the inorganic equilibrium reactions of water-rock-gas interactions allows us to quantitatively analyze the pathways and consequences of these complex interconnected reactions. This approach considers interactions among mineral assemblages (anorthite, albite, K-feldspar, quartz, kaolinite, goethite, calcite, dolomite, siderite, dawsonite, and nahcolite), various aqueous solutions, and a multicomponent fixed-pressure gas phase (CO 2 , CH 4 , and H 2 ) at 4496-psi (31-mPa) reservoir pressure. The modeling concept is based on the anoxic degradation of crude oil (irreversible conversion of n-alkanes to CO 2 , CH 4 , H 2 , and acetic acid) at oil-water contacts. These water-soluble degradation products are the driving forces for inorganic reactions among mineral assemblages, components dissolved in the formation water, and a coexisting gas at equilibrium conditions. The modeling results quantitatively reproduce the proven alteration of mineral assemblages in the reservoir triggered by oil degradation, showing (1) nearly complete dissolution of plagioclase; (2) stability of K-feldspar; (3) massive precipitation of kaolinite and, to a lesser degree, of Ca-Mg-Fe carbonate; and (4) observed uncommonly high CO 2 partial pressure (61 psi [0.42 mPa] at maximum). The evolving composition of coexisting formation water is strongly influenced by the uptake of carbonate carbon from oil degradation and sodium released from dissolving albitic plagioclase. This causes supersaturation with regard to thermodynamically stable dawsonite. The modeling results also indicate that nahcolite may form as a CO 2 -sequestering sodium carbonate instead of dawsonite, likely controlling CO 2 partial pressure.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-19
    Description: A novel hydrogeochemical modeling approach is developed to unravel thermochemical sulfate reduction (TSR) in hydrocarbon reservoirs. Our numerical model couples a web of interconnected hydrogeochemical reactions to three-dimensional (3-D) and reservoir-wide diffusive mass transport. Our modeling approach simulates a semigeneric gas reservoir sealed by anhydrite. The calculated diagenetic processes fit the observations in reservoirs affected by TSR: formation of water, precipitation of calcite, metal (di-)sulfides, and elemental sulfur as replacements of dissolved anhydrite at the expense of CH 4(g) , as well as formation of hydrogen sulfide (H 2 S). By varying input parameters, the crucial factors controlling TSR have been identified. Our results highlight that reservoir-wide diffusive mass transport is one prerequisite for TSR. An increase in the rate constant of abiotic sulfate reduction (ASR) and in diffusive mass fluxes, as well as lack of precursor minerals for metal (di-)sulfide precipitation, can increase the souring intensity and accelerate H 2 S outgassing. In contrast, precipitation of elemental sulfur, which is stable according to the chemical thermodynamics, weakens H 2 S formation. Our modeling shows that TSR is complex and cannot be represented by the single reaction ASR and by simple correlations between the rate constant of ASR and the H 2 S gas content. The application of 3-D reactive transport modeling presented here, despite its semigeneric nature, provides a good example of how such an approach can be used ahead of drilling. Our modeling helps to investigate TSR in time and space to quantify the mass conversion of all reactants involved within this web and to predict the souring level.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈span〉〈div〉ABSTRACT〈/div〉The nanometer-scale architecture of organic matter (OM) and associated pores in highly mature gas shales from the lower Silurian Longmaxi Formation in the upper Yangtze platform of south China were investigated using field emission scanning electron microscopy (SEM), focused ion beam SEM, and low-pressure gas (N〈sub〉2〈/sub〉 and CO〈sub〉2〈/sub〉) adsorption bulk pore characterization. The Longmaxi shale comprises fine-grained siliciclastic rocks deposited in a marine shelf environment, which was dominated by quartz and clay minerals. Four porous OM types were found in the Longmaxi shale on the basis of the chemical composition and spatial occurrence of OM, including (1) isolated original OM particles, (2) OM–clay mineral complexes, (3) OM–heavy mineral complexes, and (4) secondary migrated bituminous OM. The pores in the particulate OM are not homogeneously distributed, and the processes leading to different pores depend on the specific OM type. The nature of OM-hosted pores is a result of several factors, such as primary porous kerogen, mechanical compaction, organic–inorganic interactions, gaseous and liquid hydrocarbon generation, retention, and expulsion. Pore volumes and specific surface areas of the Longmaxi shale derived from low-pressure N〈sub〉2〈/sub〉 and CO〈sub〉2〈/sub〉 adsorption experiments reveal positive linear relationships with total organic carbon contents, which indicates that the pore systems in the highly mature Longmaxi shale are dominated by OM-hosted pores. Additionally, the OM-hosted pores appear connected compared to pores in the mineral matrix. Therefore, the OM-hosted pore systems offer the preferential storage space and primary migration pathways for natural gas in the Longmaxi shale reservoir.〈/span〉
    Print ISSN: 0149-1423
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...