ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association of Petroleum Geologists (AAPG)  (2)
Collection
Years
  • 1
    Publication Date: 2013-10-04
    Description: The evolution of porosity in shales with increasing maturity was examined in a suite of five New Albany Shale samples spanning a maturity range from immature (vitrinite reflectance, R o 0.35%) to postmature (R o 1.41%). Devonian to lower Mississippian New Albany Shale samples from the Illinois Basin used in this study contain marine type II kerogen having total organic carbon contents from 1.2 to 13.0 wt. %. Organic petrology, CO 2 and N 2 low-pressure adsorption, and mercury intrusion capillary pressure techniques were used to quantify pore volumes, pore sizes, and pore-size distributions. Increasing maturity of the New Albany Shale is paralleled by many changes in the characteristics of porosity. The total porosity of 9.1 vol. % in immature New Albany Shale decreases to 1.5 vol. % in the late mature sample, whereas total pore volumes decrease from 0.0365 to 0.0059 cm 3 /g in the same sequence. Reversing the trend at even higher maturity, the postmature New Albany Shale exhibits higher porosity and larger total pore volumes compared to the late mature sample. With increasing maturity, changes in total porosity and total pore volumes are accompanied by changes in pore-size distributions and relative proportions of micropores, mesopores, and macropores. Porosity-related variances are directly related to differences in the amount and character of the organic matter and mineralogical composition, but maturity exerts the dominant control upon these characteristics. We conclude that organic matter transformation due to hydrocarbon generation and migration is a pivotal cause of the observed porosity differences.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-16
    Description: The distribution of porosity was examined on seven drill cores from west–central Alberta encompassing the Belle Fourche and Second White Specks Formations. These Cenomanian–Turonian mudrocks from the Western Canada Sedimentary Basin exhibit good organic richness (〉2 wt. % total organic carbon) and marine kerogen type II with limited kerogen type III. With the increasing thermal maturity from approximately 0.43% vitrinite reflectance ( R o ) to approximately 0.90% R o , the total porosity decreases from approximately 9 to approximately 1 vol. %. This change translates to a reduction in total pore volume from approximately 0.05 to approximately 0.005 cm 3 /g and is accompanied by changes in relative proportions of micropore, mesopore, and macropore volumes. Variations in total porosity for the seven cores with different thermal maturities across Alberta are mainly related to mesoporosity and macroporosity, although the in-core variations in total porosity are mainly related to microporosity. In general, organic matter micropores contribute to the overall microporosity in the seven cores across the study area. The increase in the total pore volumes is in accordance with an increasing concentration of quartz, although increasing concentrations of chlorite and kaolinite may contribute to greater abundance of micropores in the seven cores. The in-core variations suggest that greater contents of kaolinite and illite may contribute to increasing mesopore volumes. Variations in pore volumes and pore size distribution with depth within individual cores (representing specific thermal maturity level) differ from what is observed laterally, when cores of various thermal maturity levels across Alberta are compared, indicating complex controls on porosity systems.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...