ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-07-01
    Description: The megacrack pattern of the ephemeral north Panamint dry lake, California, United States, is characterized by variably sized polygons with diameters ranging from hundreds of meters to meters. The evolution and subsurface extent of this polygonal pattern and a probable tectonic link are examined by ground resistivity measurements and surface mapping. Crack development is initiated by the shrinking of clays caused by changes in water content near the surface. For crack evolution, the following processes are proposed: Cavities develop at approximately 1-m (∼3-ft) depth during a subsurface phase, followed by the collapse of the overburden into the existing cavities to form the surface cracks. Cracks are filled by wind-blown sand and dried-out lake sediments from collapsing crack walls. Following burial, differences in competence between crack-fill and surrounding playa-lake sediments provide zones of structural weakness that might channelize stress release and faulting. Ground resistivity measurements confirmed the extent of the cracks to a depth of more than 3 m (〉9 ft). The megacrack pattern is compared to a Rotliegende (Upper Permian) tight gas field, located in the southern Permian Basin of northwestern Germany, situated in a comparable geologic setting. There, a multidirectional polygonal pattern is recorded on horizon slices of three-dimensional seismic data and compares well to our observations from the Panamint Valley. The Rotliegende pattern is associated with low-offset faults, which are proposed to be responsible for subtle reservoir compartmentalization.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Tectonophysics, ELSEVIER SCIENCE BV, 716, pp. 1-3, ISSN: 0040-1951
    Publication Date: 2017-11-04
    Description: The causes of continental breakup are still poorly understood. More and more it becomes evident that classical concepts of deep-mantle versus intra-plate forces controlling continental breakup and shaping the subsequent evolution of the bordering passive margins, including associated vertical and horizontal movements, need to be revised. Instead of thinking in terms of active versus passive rift models or magma-poor versus magma-rich margins, concepts are needed that perceive these geodynamic processes in a three dimensional continuum evolving through time. The South Atlantic margins, often considered as a classical example for a plume related continental breakup, seem to be a perfect site to revisit and to test such new concepts. Traces of intense magmatism are present on both conjugate margins as well as aseismic ridges connecting them with a supposed current plume location below the island of Tristan da Cunha. Of these ridges, the Walvis Ridge has been interpreted as one of the major hotspot trails in the South Atlantic. The German priority program SAMPLE (DFG-SPP 1375: South Atlantic Margin Processes and Links with onshore Evolution), funded by the German Science Foundation (DFG) from 2008 to 2016, addressed a number of fundamental questions related to the processes responsible for opening of the South Atlantic and the subsequent evolution of both continental margins. This volume assembles new results emerging from multidisciplinary research in the SAMPLE projects and those of other groups working in the region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...