ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1992-07-03
    Description: Medium-chain fatty acids (FAs), found in storage lipids of certain plants, are an important renewable resource. Seeds of undomesticated California bay accumulate laurate (12:0), and a 12:0-acyl-carrier protein thioesterase (BTE) has been purified from this tissue. Sequencing of BTE enabled the cloning of a complementary DNA coding for a plastid-targeted preprotein. Expression of the complementary DNA in the seeds of Arabidopsis thaliana resulted in BTE activity, and medium chains accumulated at the expense of long-chain (greater than or equal to 16) FAs. Laurate became the most abundant FA species and was deposited in the storage triacylglycerols. These results demonstrate a mechanism for medium-chain FA synthesis in plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voelker, T A -- Worrell, A C -- Anderson, L -- Bleibaum, J -- Fan, C -- Hawkins, D J -- Radke, S E -- Davies, H M -- New York, N.Y. -- Science. 1992 Jul 3;257(5066):72-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Calgene, Inc., Davis, CA 95616.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1621095" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/genetics/*metabolism ; Acyl-Carrier Protein S-Acetyltransferase ; Amino Acid Sequence ; DNA/genetics ; Fatty Acids/*biosynthesis/isolation & purification ; Genetic Engineering ; Lauric Acids/*metabolism ; Molecular Sequence Data ; Plants/genetics/*metabolism ; Plants, Genetically Modified ; Plasmids ; Seeds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-04
    Description: Superoxide and other reactive oxygen species (ROS) originate from several natural sources and profoundly influence numerous elemental cycles, including carbon and trace metals. In the deep ocean, the permanent absence of light precludes currently known ROS sources, yet ROS production mysteriously occurs. Here, we show that taxonomically and ecologically diverse heterotrophic bacteria from aquatic and terrestrial environments are a vast, unrecognized, and light-independent source of superoxide, and perhaps other ROS derived from superoxide. Superoxide production by a model bacterium within the ubiquitous Roseobacter clade involves an extracellular oxidoreductase that is stimulated by the reduced form of nicotinamide adenine dinucleotide (NADH), suggesting a surprising homology with eukaryotic organisms. The consequences of ROS cycling in immense aphotic zones representing key sites of nutrient regeneration and carbon export must now be considered, including potential control of carbon remineralization and metal bioavailability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diaz, Julia M -- Hansel, Colleen M -- Voelker, Bettina M -- Mendes, Chantal M -- Andeer, Peter F -- Zhang, Tong -- New York, N.Y. -- Science. 2013 Jun 7;340(6137):1223-6. doi: 10.1126/science.1237331. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641059" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carbon Cycle ; *Heterotrophic Processes ; Mercury/*metabolism ; Molecular Sequence Data ; NAD/metabolism ; Oxidoreductases/metabolism ; Phylogeny ; Roseobacter/classification/*metabolism ; Superoxides/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-03-17
    Description: Patolsky et al. (Reports, 25 August 2006, p. 1100) used silicon nanowires to record action potentials in rat neuronal axons and found increases in conductance of about 85 nanosiemens. We point out that the data correspond to voltage changes of about -85 millivolts on the nanowire and that conceivable mechanisms of axon-nanowire interaction lead to signals that are opposite in sign or smaller by orders of magnitude.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fromherz, Peter -- Voelker, Moritz -- New York, N.Y. -- Science. 2009 Mar 13;323(5920):1429; author reply 1429. doi: 10.1126/science.1155416.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Membrane and Neurophysics, Max Planck Institute for Biochemistry, D82152 Martinsried/Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286538" target="_blank"〉PubMed〈/a〉
    Keywords: *Action Potentials ; Animals ; Axons/*physiology ; Electric Conductivity ; Electric Stimulation ; Ion Channel Gating ; *Nanowires ; Neural Inhibition ; Neurons/*physiology ; Rats ; Semiconductors ; Silicon ; Sodium/metabolism ; Static Electricity ; Transistors, Electronic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-14
    Description: Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW) circulation patterns from the Pliocene epoch to the present day. After the Strait of Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic. Depositional hiatuses indicate erosion by bottom currents related to higher volumes of MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses coincide with regional tectonic events and changes in global thermohaline circulation (THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation (AMOC), THC, and climatic shifts by contributing a component of warm, saline water to northern latitudes while in turn being influenced by plate tectonics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hernandez-Molina, F Javier -- Stow, Dorrik A V -- Alvarez-Zarikian, Carlos A -- Acton, Gary -- Bahr, Andre -- Balestra, Barbara -- Ducassou, Emmanuelle -- Flood, Roger -- Flores, Jose-Abel -- Furota, Satoshi -- Grunert, Patrick -- Hodell, David -- Jimenez-Espejo, Francisco -- Kim, Jin Kyoung -- Krissek, Lawrence -- Kuroda, Junichiro -- Li, Baohua -- Llave, Estefania -- Lofi, Johanna -- Lourens, Lucas -- Miller, Madeline -- Nanayama, Futoshi -- Nishida, Naohisa -- Richter, Carl -- Roque, Cristina -- Pereira, Helder -- Sanchez Goni, Maria Fernanda -- Sierro, Francisco J -- Singh, Arun Deo -- Sloss, Craig -- Takashimizu, Yasuhiro -- Tzanova, Alexandrina -- Voelker, Antje -- Williams, Trevor -- Xuan, Chuang -- New York, N.Y. -- Science. 2014 Jun 13;344(6189):1244-50. doi: 10.1126/science.1251306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK. javier.hernandez-molina@rhul.ac.uk. ; Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK. ; International Ocean Discovery Program, Department of Oceanography, Texas A&M University, College Station, TX 77845, USA. ; Department of Geography and Geology, Sam Houston State University, Huntsville, TX 77341, USA. ; Institute of Geosciences, University of Frankfurt, 60438 Frankfurt, Germany. ; Institute of Marine Sciences, University of California, Santa Cruz, CA 95064, USA. ; EPOC, Universite de Bordeaux, 33615 Pessac Cedex, France. ; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA. ; Departamento de Geologia, Universidad de Salamanca, 3008 Salamanca, Spain. ; Department of Natural History Sciences, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan. ; Institute for Earth Sciences, University of Graz, A-8010 Graz, Austria. ; Godwin Laboratory for Palaeoclimate Research, University of Cambridge, Cambridge CB2 3EQ, UK. ; Department of Biogeochemistry, JAMSTEC, 237-0061 Yokosuka, Japan. ; Korea Institute of Ocean Science & Technology, Ansan 426-744, Korea. ; School of Earth Sciences, Ohio State University, Columbus, OH 43210, USA. ; Institute for Frontier Research on Earth Evolution (IFREE), JAMSTEC, 2-15 Natsushima-Cho, Yokosuka-city, Kanagawa 237-0061, Japan. ; Department of Micropalaeontology, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, P.R. China. ; Instituto Geologico y Minero de Espana, Rios Rosas 23, 28003 Madrid, Spain. ; Geosciences Montpellier, Universite Montpellier II, 34090 Montpellier, France, and Department of Geology, University of Leicester, Leicester LE1 7RH, UK. ; Institute of Earth Sciences, Utrecht University, 3584 CD Utrecht, Netherlands. ; Department of Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125, USA. ; Institute of Geology and Geoinformation, Geological Survey of Japan (AIST), Ibaraki 305-8567, Japan. ; School of Geosciences, University of Louisiana, Lafayette, LA 70504, USA. ; Divisao de Geologia e Georecursos Marinhos, IPMA, 1749-077 Lisboa, Portugal. ; Grupo de Biologia e Geologia, Escola Secundaria de Loule, 8100-740 Loule, Portugal. ; Ecole Pratique des Hautes Etudes, EPOC, Universite de Bordeaux, 33615 Pessac, France. ; Department of Geology, Banaras Hindu University, Varanasi 221005, India. ; School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia. ; Department of Geology, Faculty of Education, Niigata University, Niigata 950-2181, Japan. ; Department of Geological Sciences, Brown University, Providence, RI 02912, USA. ; Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA. ; Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24926012" target="_blank"〉PubMed〈/a〉
    Keywords: Atlantic Ocean ; *Climate Change ; Mediterranean Sea ; Paleontology ; *Seawater ; *Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...