ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-17
    Description: Morphological transformations of living cells, such as shape adaptation to external stimuli, blebbing, invagination, or tethering, result from an intricate interplay between the plasma membrane and its underlying cytoskeleton, where molecular motors generate forces. Cellular complexity defies a clear identification of the competing processes that lead to such a rich phenomenology. In a synthetic biology approach, designing a cell-like model assembled from a minimal set of purified building blocks would allow the control of all relevant parameters. We reconstruct actomyosin vesicles in which the coupling of the cytoskeleton to the membrane, the topology of the cytoskeletal network, and the contractile activity can all be precisely controlled and tuned. We demonstrate that tension generation of an encapsulated active actomyosin network suffices for global shape transformation of cell-sized lipid vesicles, which are reminiscent of morphological adaptations in living cells. The observed polymorphism of our cell-like model, such as blebbing, tether extrusion, or faceted shapes, can be qualitatively explained by the protein concentration dependencies and a force balance, taking into account the membrane tension, the density of anchoring points between the membrane and the actin network, and the forces exerted by molecular motors in the actin network. The identification of the physical mechanisms for shape transformations of active cytoskeletal vesicles sets a conceptual and quantitative benchmark for the further exploration of the adaptation mechanisms of cells.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-01
    Description: Genome editing with CRISPR/Cas9 is a promising new approach for correcting or mitigating disease-causing mutations. Duchenne muscular dystrophy (DMD) is associated with lethal degeneration of cardiac and skeletal muscle caused by more than 3000 different mutations in the X-linked dystrophin gene ( DMD ). Most of these mutations are clustered in "hotspots." There is a fortuitous correspondence between the eukaryotic splice acceptor and splice donor sequences and the protospacer adjacent motif sequences that govern prokaryotic CRISPR/Cas9 target gene recognition and cleavage. Taking advantage of this correspondence, we screened for optimal guide RNAs capable of introducing insertion/deletion (indel) mutations by nonhomologous end joining that abolish conserved RNA splice sites in 12 exons that potentially allow skipping of the most common mutant or out-of-frame DMD exons within or nearby mutational hotspots. We refer to the correction of DMD mutations by exon skipping as myoediting. In proof-of-concept studies, we performed myoediting in representative induced pluripotent stem cells from multiple patients with large deletions, point mutations, or duplications within the DMD gene and efficiently restored dystrophin protein expression in derivative cardiomyocytes. In three-dimensional engineered heart muscle (EHM), myoediting of DMD mutations restored dystrophin expression and the corresponding mechanical force of contraction. Correcting only a subset of cardiomyocytes (30 to 50%) was sufficient to rescue the mutant EHM phenotype to near-normal control levels. We conclude that abolishing conserved RNA splicing acceptor/donor sites and directing the splicing machinery to skip mutant or out-of-frame exons through myoediting allow correction of the cardiac abnormalities associated with DMD by eliminating the underlying genetic basis of the disease.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Sleep disruption is associated with cognitive decline and dementia in older adults; however, the underlying mechanisms are unclear. In rodents, sleep disruption causes microglial activation, inhibition of which improves cognition. However, data from humans are lacking. We studied participants in two cohort studies of older persons—the Rush Memory and Aging Project and the Religious Orders Study. We assessed sleep fragmentation by actigraphy and related this to cognitive function, to neocortical microglial marker gene expression measured by RNA sequencing, and to the neocortical density of microglia assessed by immunohistochemistry. Greater sleep fragmentation was associated with higher neocortical expression of genes characteristic of aged microglia, and a higher proportion of morphologically activated microglia, independent of chronological age- and dementia-related neuropathologies. Furthermore, these were, in turn, associated with worse cognition. This suggests that sleep fragmentation is accompanied by accelerated microglial aging and activation, which may partially underlie its association with cognitive impairment.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...