ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-15
    Description: Calcifying marine phytoplankton—coccolithophores— are some of the most successful yet enigmatic organisms in the ocean and are at risk from global change. To better understand how they will be affected, we need to know "why" coccolithophores calcify. We review coccolithophorid evolutionary history and cell biology as well as insights from recent experiments to provide a critical assessment of the costs and benefits of calcification. We conclude that calcification has high energy demands and that coccolithophores might have calcified initially to reduce grazing pressure but that additional benefits such as protection from photodamage and viral/bacterial attack further explain their high diversity and broad spectrum ecology. The cost-benefit aspect of these traits is illustrated by novel ecosystem modeling, although conclusive observations remain limited. In the future ocean, the trade-off between changing ecological and physiological costs of calcification and their benefits will ultimately decide how this important group is affected by ocean acidification and global warming.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-13
    Description: The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-03
    Description: Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Honisch, Barbel -- Ridgwell, Andy -- Schmidt, Daniela N -- Thomas, Ellen -- Gibbs, Samantha J -- Sluijs, Appy -- Zeebe, Richard -- Kump, Lee -- Martindale, Rowan C -- Greene, Sarah E -- Kiessling, Wolfgang -- Ries, Justin -- Zachos, James C -- Royer, Dana L -- Barker, Stephen -- Marchitto, Thomas M Jr -- Moyer, Ryan -- Pelejero, Carles -- Ziveri, Patrizia -- Foster, Gavin L -- Williams, Branwen -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1058-63. doi: 10.1126/science.1208277.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA. hoenisch@ldeo.columbia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383840" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Animals ; *Aquatic Organisms ; Atmosphere ; Carbon Dioxide ; Carbonates/analysis ; *Ecosystem ; Extinction, Biological ; Forecasting ; Fossils ; *Geological Phenomena ; Hydrogen-Ion Concentration ; Oceans and Seas ; Seawater/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-03
    Description: The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Norris, R D -- Turner, S Kirtland -- Hull, P M -- Ridgwell, A -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):492-8. doi: 10.1126/science.1240543.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA. rnorris@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908226" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; *Climate Change/history ; *Ecosystem ; Greenhouse Effect ; History, Ancient ; *Oceans and Seas ; *Seawater ; Temperature ; Tidal Waves ; Vertebrates
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-04-02
    Description: The environmental conditions of Earth, including the climate, are determined by physical, chemical, biological, and human interactions that transform and transport materials and energy. This is the "Earth system": a highly complex entity characterized by multiple nonlinear responses and thresholds, with linkages between disparate components. One important part of this system is the iron cycle, in which iron-containing soil dust is transported from land through the atmosphere to the oceans, affecting ocean biogeochemistry and hence having feedback effects on climate and dust production. Here we review the key components of this cycle, identifying critical uncertainties and priorities for future research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jickells, T D -- An, Z S -- Andersen, K K -- Baker, A R -- Bergametti, G -- Brooks, N -- Cao, J J -- Boyd, P W -- Duce, R A -- Hunter, K A -- Kawahata, H -- Kubilay, N -- laRoche, J -- Liss, P S -- Mahowald, N -- Prospero, J M -- Ridgwell, A J -- Tegen, I -- Torres, R -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):67-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Environmental Sciences, University of East Anglia, Norwich NR47TJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15802595" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Carbon Dioxide ; *Climate ; Desert Climate ; *Dust ; *Iron/metabolism ; Oceans and Seas ; Phytoplankton/physiology ; *Seawater ; Soil
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-11-01
    Description: The evolutionary success of planktic calcifiers during the Phanerozoic stabilized the climate system by introducing a new mechanism that acts to buffer ocean carbonate-ion concentration: the saturation-dependent preservation of carbonate in sea-floor sediments. Before this, buffering was primarily accomplished by adjustment of shallow-water carbonate deposition to balance oceanic inputs from weathering on land. Neoproterozoic ice ages of near-global extent and multimillion-year duration and the formation of distinctive sedimentary (cap) carbonates can thus be understood in terms of the greater sensitivity of the Precambrian carbon cycle to the loss of shallow-water environments and CO2-climate feedback on ice-sheet growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ridgwell, Andy J -- Kennedy, Martin J -- Caldeira, Ken -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):859-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, University of California-Riverside, Riverside, CA 92521, USA. andyr@citrus.ucr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593177" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-13
    Description: Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine-to-calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in the partial pressure of oxygen in the atmosphere at ~400 million years (Ma) ago and reveals a step change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma ago. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma ago.
    Keywords: Geochemistry, Geophysics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...