ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-21
    Description: Stabilization of the hypoxia-inducible factor 1 (HIF-1) increases life span and health span in nematodes through an unknown mechanism. We report that neuronal stabilization of HIF-1 mediates these effects in Caenorhabditis elegans through a cell nonautonomous signal to the intestine, which results in activation of the xenobiotic detoxification enzyme flavin-containing monooxygenase-2 (FMO-2). This prolongevity signal requires the serotonin biosynthetic enzyme TPH-1 in neurons and the serotonin receptor SER-7 in the intestine. Intestinal FMO-2 is also activated by dietary restriction (DR) and is necessary for DR-mediated life-span extension, which suggests that this enzyme represents a point of convergence for two distinct longevity pathways. FMOs are conserved in eukaryotes and induced by multiple life span-extending interventions in mice, which suggests that these enzymes may play a critical role in promoting health and longevity across phyla.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leiser, Scott F -- Miller, Hillary -- Rossner, Ryan -- Fletcher, Marissa -- Leonard, Alison -- Primitivo, Melissa -- Rintala, Nicholas -- Ramos, Fresnida J -- Miller, Dana L -- Kaeberlein, Matt -- P30AG013280/AG/NIA NIH HHS/ -- R00AGA0033050/PHS HHS/ -- R01AG038518/AG/NIA NIH HHS/ -- T32AG000057/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Dec 11;350(6266):1375-8. doi: 10.1126/science.aac9257. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Washington, Seattle, WA 98195, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. ; Department of Pathology, University of Washington, Seattle, WA 98195, USA. kaeber@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586189" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/metabolism ; Caenorhabditis elegans/genetics/metabolism/*physiology ; Caenorhabditis elegans Proteins/chemistry/genetics/metabolism/*physiology ; Diet ; Intestines/*enzymology ; Longevity/genetics/*physiology ; Mice ; Neurons/*metabolism ; Oxygenases/genetics/*physiology ; Protein Stability ; RNA Interference ; Receptors, Serotonin/metabolism ; Signal Transduction ; Transcription Factors/chemistry/*metabolism ; Tryptophan Hydroxylase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...