ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-03-27
    Description: A formulation based on defect-generated dissolution stepwaves of the variation of dissolution rate with the degree of undersaturation is validated by near-atomic-scale observations of surfaces, Monte Carlo simulations, and experimental bulk dissolution rates. The dissolution stepwaves emanating from etch pits provide a train of steps similar to those of a spiral but with different behavior. Their role in accounting for the bulk dissolution rate of crystals provides a conceptual framework for mineral dissolution far from equilibrium. Furthermore, the law extends research to conditions closer to equilibrium and predicts a nonlinear decrease in the rate of dissolution as equilibrium is approached, which has implications for understanding artificial and natural processes involving solid-fluid reactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lasaga, A C -- Luttge, A -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2400-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264534" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...