ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉Stretchable conductors are essential components in next-generation deformable and wearable electronic devices. The ability of stretchable conductors to achieve sufficient electrical conductivity, however, remains limited under high strain, which is particularly detrimental for charge storage devices. In this study, we present stretchable conductors made from multiple layers of gradient assembled polyurethane (GAP) comprising gold nanoparticles capable of self-assembly under strain. Stratified layering affords control over the composite internal architecture at multiple scales, leading to metallic conductivity in both the lateral and transversal directions under strains of as high as 300%. The unique combination of the electrical and mechanical properties of GAP electrodes enables the development of a stretchable lithium-ion battery with a charge-discharge rate capability of 100 mAh g〈sup〉–1〈/sup〉 at a current density of 0.5 A g〈sup〉–1〈/sup〉 and remarkable cycle retention of 96% after 1000 cycles. The hierarchical GAP nanocomposites afford rapid fabrication of advanced charge storage devices.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Achieving defect-free block copolymer (BCP) nanopatterns with a long-ranged orientation over a large area remains a persistent challenge, impeding the successful and widespread application of BCP self-assembly. Here, we demonstrate a new experimental strategy for defect annihilation while conserving structural order and enhancing uniformity of nanopatterns. Sequential shear alignment and solvent vapor annealing generate perfectly aligned nanopatterns with a low defect density over centimeter-scale areas, outperforming previous single or sequential combinations of annealing. The enhanced order quality and pattern uniformity were characterized in unprecedented detail via scattering analysis and incorporating new mathematical indices using elaborate image processing algorithms. In addition, using an advanced sampling method combined with a coarse-grained molecular simulation, we found that domain swelling is the driving force for enhanced defect annihilation. The superior quality of large-scale nanopatterns was further confirmed with diffraction and optical properties after metallized patterns, suggesting strong potential for application in optoelectrical devices.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈p〉Colloidal dispersion has elastic properties due to Brownian relaxation process. However, experimental evidence for the elastic properties, characterized with normal stress differences, is elusive in shearing colloidal dispersion, particularly at low Péclet numbers (〈i〉Pe〈/i〉 Pe. The nanoparticle dispersion was expected to behave as a Newtonian fluid because of its ultrashort relaxation time (2 μs), but large shear strain experienced by the PS beads causes the notable non-Newtonian behavior. We demonstrate that the unique rheological properties of the nanoparticle dispersion generate the secondary flow in perpendicular to mainstream in a noncircular conduit, and the elastic properties of blood plasma–constituting protein solutions are elucidated by the colloidal dynamics of protein molecules.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018
    Description: 〈p〉The key component currently missing for the next generation of transparent and flexible displays is a high-performance polymer material that is flexible, while showing optical and thermal properties of glass. It must be transparent to visible light and show a low coefficient of thermal expansion (CTE). While specialty plastics such as aromatic polyimides are promising, reducing their CTE and improving transparency simultaneously proved challenging, with increasing coloration the main problem to be resolved. We report a new poly(amide-imide) material that is flexible and displays glass-like behavior with a CTE value of 4 parts per million/°C. This novel polymer was successfully used as a substrate to fabricate transparent and flexible indium-gallium-zinc oxide thin-film transistors.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-10-27
    Description: The key component currently missing for the next generation of transparent and flexible displays is a high-performance polymer material that is flexible, while showing optical and thermal properties of glass. It must be transparent to visible light and show a low coefficient of thermal expansion (CTE). While specialty plastics such as aromatic polyimides are promising, reducing their CTE and improving transparency simultaneously proved challenging, with increasing coloration the main problem to be resolved. We report a new poly(amide-imide) material that is flexible and displays glass-like behavior with a CTE value of 4 parts per million/°C. This novel polymer was successfully used as a substrate to fabricate transparent and flexible indium-gallium-zinc oxide thin-film transistors.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-21
    Description: Atomically thin molybdenum disulfide (MoS 2 ) has been extensively investigated in semiconductor electronics but has not been applied in a backplane circuitry of organic light-emitting diode (OLED) display. Its applicability as an active drive element is hampered by the large contact resistance at the metal/MoS 2 interface, which hinders the transport of carriers at the dielectric surface, which in turn considerably deteriorates the mobility. Modified switching device architecture is proposed for efficiently exploiting the high- k dielectric Al 2 O 3 layer, which, when integrated in an active matrix, can drive the ultrathin OLED display even in dynamic folding states. The proposed architecture exhibits 28 times increase in mobility compared to a normal back-gated thin-film transistor, and its potential as a wearable display attached to a human wrist is demonstrated.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-01-25
    Description: Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user’s vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user’s external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...