ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1990-10-12
    Description: Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Phillips, H S -- Hains, J M -- Laramee, G R -- Rosenthal, A -- Winslow, J W -- New York, N.Y. -- Science. 1990 Oct 12;250(4978):290-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Genentech, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1688328" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/physiology ; Animals ; Autoradiography ; Brain/anatomy & histology/*metabolism ; Brain-Derived Neurotrophic Factor ; Computer Simulation ; Gene Expression ; Nerve Growth Factors/*genetics ; Nerve Tissue Proteins/*genetics ; Neurons/*metabolism ; Nucleic Acid Hybridization ; Organ Specificity ; RNA Probes ; RNA, Messenger/*analysis/genetics ; Rats ; Sulfur Radioisotopes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1987-05-01
    Description: A partial amino acid sequence obtained for porcine atrial muscarinic acetylcholine receptor was used to isolate complementary DNA clones containing the complete receptor coding region. The deduced 466-amino acid polypeptide exhibits extensive structural and sequence homology with other receptors coupled to guanine nucleotide binding (G) proteins (for example, the beta-adrenergic receptor and rhodopsins); this similarity predicts a structure of seven membrane-spanning regions distinguished by the disposition of a large cytoplasmic domain. Stable transfection of the Chinese hamster ovary cell line with the atrial receptor complementary DNA leads to the binding of muscarinic antagonists in these cells with affinities characteristic of the M2 receptor subtype. The atrial muscarinic receptor is encoded by a unique gene consisting of a single coding exon and multiple, alternatively spliced 5' noncoding regions. The atrial receptor is distinct from the cerebral muscarinic receptor gene product, sharing only 38% overall amino acid homology and possessing a completely nonhomologous large cytoplasmic domain, suggesting a role for the latter region in differential effector coupling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peralta, E G -- Winslow, J W -- Peterson, G L -- Smith, D H -- Ashkenazi, A -- Ramachandran, J -- Schimerlik, M I -- Capon, D J -- CA16417/CA/NCI NIH HHS/ -- HL23632/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1987 May 1;236(4801):600-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3107123" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA/genetics ; Exons ; GTP-Binding Proteins/metabolism ; Heart Atria/analysis ; Immunosorbent Techniques ; Membrane Proteins ; Molecular Weight ; Nucleic Acid Hybridization ; Peptide Fragments/metabolism ; Quinuclidinyl Benzilate/metabolism ; Receptors, Muscarinic/*genetics/metabolism ; Sequence Homology, Nucleic Acid ; Swine ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1987-10-30
    Description: To investigate whether a particular receptor subtype can be coupled to multiple effector systems, recombinant M2 muscarinic receptors were expressed in cells lacking endogenous receptor. The muscarinic agonist carbachol both inhibited adenylyl cyclase and stimulated phosphoinositide hydrolysis. The stimulation of phosphoinositide hydrolysis was significantly less efficient and more dependent on receptor levels than the inhibition of adenylyl cyclase. Both responses were mediated by guanine nucleotide binding proteins, as evidenced by their inhibition by pertussis toxin; the more efficiently coupled adenylyl cyclase response was significantly more sensitive. Thus, individual subtypes of a given receptor are capable of regulating multiple effector pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashkenazi, A -- Winslow, J W -- Peralta, E G -- Peterson, G L -- Schimerlik, M I -- Capon, D J -- Ramachandran, J -- CA16417/CA/NCI NIH HHS/ -- HL23632/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1987 Oct 30;238(4827):672-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2823384" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylate Cyclase Toxin ; Adenylyl Cyclases/*metabolism ; Animals ; Carbachol/pharmacology ; Cell Line ; Cricetinae ; Cyclic AMP/biosynthesis ; GTP-Binding Proteins/*metabolism ; Gene Expression Regulation ; Guanosine 5'-O-(3-Thiotriphosphate) ; Guanosine Triphosphate/analogs & derivatives/metabolism ; Oxotremorine/pharmacology ; Pertussis Toxin ; Phosphatidylinositols/*metabolism ; Receptors, Muscarinic/*metabolism ; Recombinant Proteins ; Thionucleotides/metabolism ; Virulence Factors, Bordetella/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...