ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-04-22
    Description: Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, Douglas S -- Teagle, Damon A H -- Alt, Jeffrey C -- Banerjee, Neil R -- Umino, Susumu -- Miyashita, Sumio -- Acton, Gary D -- Anma, Ryo -- Barr, Samantha R -- Belghoul, Akram -- Carlut, Julie -- Christie, David M -- Coggon, Rosalind M -- Cooper, Kari M -- Cordier, Carole -- Crispini, Laura -- Durand, Sedelia Rodriguez -- Einaudi, Florence -- Galli, Laura -- Gao, Yongjun -- Geldmacher, Jorg -- Gilbert, Lisa A -- Hayman, Nicholas W -- Herrero-Bervera, Emilio -- Hirano, Nobuo -- Holter, Sara -- Ingle, Stephanie -- Jiang, Shijun -- Kalberkamp, Ulrich -- Kerneklian, Marcie -- Koepke, Jurgen -- Laverne, Christine -- Vasquez, Haroldo L Lledo -- Maclennan, John -- Morgan, Sally -- Neo, Natsuki -- Nichols, Holly J -- Park, Sung-Hyun -- Reichow, Marc K -- Sakuyama, Tetsuya -- Sano, Takashi -- Sandwell, Rachel -- Scheibner, Birgit -- Smith-Duque, Chris E -- Swift, Stephen A -- Tartarotti, Paola -- Tikku, Anahita A -- Tominaga, Masako -- Veloso, Eugenio A -- Yamasaki, Toru -- Yamazaki, Shusaku -- Ziegler, Christa -- New York, N.Y. -- Science. 2006 May 19;312(5776):1016-20. Epub 2006 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA. dwilson@geol.ucsb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627698" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Sampling an intact sequence of oceanic crust through lavas, dikes, and gabbros is necessary to advance the understanding of the formation and evolution of crust formed at mid-ocean ridges, but it has been an elusive goal of scientific ocean drilling for decades. Recent drilling in the eastern Pacific Ocean in Hole 1256D reached gabbro within seismic layer 2, 1157 meters into crust formed at a superfast spreading rate. The gabbros are the crystallized melt lenses that formed beneath a mid-ocean ridge. The depth at which gabbro was reached confirms predictions extrapolated from seismic experiments at modern mid-ocean ridges: Melt lenses occur at shallower depths at faster spreading rates. The gabbros intrude metamorphosed sheeted dikes and have compositions similar to the overlying lavas, precluding formation of the cumulate lower oceanic crust from melt lenses so far penetrated by Hole 1256D.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...