ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-12
    Description: The human transfer RNA methyltransferase 9–like gene (TRM9L, also known as KIAA1456) encodes a negative regulator of tumor growth that is frequently silenced in many forms of cancer. While TRM9L can inhibit tumor cell growth in vivo, the molecular mechanisms underlying the tumor inhibition activity of TRM9L are unknown. We show that oxidative stress induces the rapid and dose-dependent phosphorylation of TRM9L within an intrinsically disordered domain that is necessary for tumor growth suppression. Multiple serine residues are hyperphosphorylated in response to oxidative stress. Using a chemical genetic approach, we identified a key serine residue in TRM9L that undergoes hyperphosphorylation downstream of the oxidative stress–activated MEK (mitogen-activated protein kinase kinase)–ERK (extracellular signal–regulated kinase)–RSK (ribosomal protein S6 kinase) signaling cascade. Moreover, we found that phosphorylated TRM9L interacts with the 14-3-3 family of proteins, providing a link between oxidative stress and downstream cellular events involved in cell cycle control and proliferation. Mutation of the serine residues required for TRM9L hyperphosphorylation and 14-3-3 binding abolished the tumor inhibition activity of TRM9L. Our results uncover TRM9L as a key downstream effector of the ERK signaling pathway and elucidate a phospho-signaling regulatory mechanism underlying the tumor inhibition activity of TRM9L.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2019
    Description: 〈p〉At the intersection of the outwardly disparate fields of nanoparticle science and three-dimensional printing lies the promise of revolutionary new "nanocomposite" materials. Emergent phenomena deriving from the nanoscale constituents pave the way for a new class of transformative materials with encoded functionality amplified by new couplings between electrical, optical, transport, and mechanical properties. We provide an overview of key scientific advances that empower the development of such materials: nanoparticle synthesis and assembly, multiscale assembly and patterning, and mechanical characterization to assess stability. The focus is on recent illustrations of approaches that bridge these fields, facilitate the design of ordered nanocomposites, and offer clear pathways to device integration. We conclude by highlighting the remaining scientific challenges, including the critical need for assembly-compatible particle–fluid systems that ultimately yield mechanically robust materials. The role of domain boundaries and/or defects emerges as an important open question to address, with recent advances in fabrication setting the stage for future work in this area.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-05-20
    Description: Failure of cells to respond to DNA damage is a primary event associated with mutagenesis and environmental toxicity. To map the transcriptional network controlling the damage response, we measured genomewide binding locations for 30 damage-related transcription factors (TFs) after exposure of yeast to methyl-methanesulfonate (MMS). The resulting 5272 TF-target interactions revealed extensive changes in the pattern of promoter binding and identified damage-specific binding motifs. As systematic functional validation, we identified interactions for which the target changed expression in wild-type cells in response to MMS but was nonresponsive in cells lacking the TF. Validated interactions were assembled into causal pathway models that provide global hypotheses of how signaling, transcription, and phenotype are integrated after damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811083/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811083/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Workman, Christopher T -- Mak, H Craig -- McCuine, Scott -- Tagne, Jean-Bosco -- Agarwal, Maya -- Ozier, Owen -- Begley, Thomas J -- Samson, Leona D -- Ideker, Trey -- R01 ES014811/ES/NIEHS NIH HHS/ -- R01 ES014811-01A1/ES/NIEHS NIH HHS/ -- R01 GM070743/GM/NIGMS NIH HHS/ -- R01 GM070743-01/GM/NIGMS NIH HHS/ -- R01 GM070743-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 May 19;312(5776):1054-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16709784" target="_blank"〉PubMed〈/a〉
    Keywords: *DNA Damage ; DNA Repair/genetics/physiology ; DNA, Fungal ; Fungal Proteins/metabolism ; Gene Expression Regulation, Fungal ; Methyl Methanesulfonate ; Promoter Regions, Genetic ; Protein Binding ; Saccharomyces ; Signal Transduction ; Systems Theory ; Transcription Factors/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...