ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7)
  • American Association for the Advancement of Science (AAAS)  (7)
  • Computer Science  (7)
  • 1
    Publication Date: 2006-07-11
    Description: We investigated extraneural manifestations in scrapie-infected transgenic mice expressing prion protein lacking the glycophosphatydylinositol membrane anchor. In the brain, blood, and heart, both abnormal protease-resistant prion protein (PrPres) and prion infectivity were readily detected by immunoblot and by inoculation into nontransgenic recipients. The titer of infectious scrapie in blood plasma exceeded 10(7) 50% infectious doses per milliliter. The hearts of these transgenic mice contained PrPres-positive amyloid deposits that led to myocardial stiffness and cardiac disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820586/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820586/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trifilo, Matthew J -- Yajima, Toshitaka -- Gu, Yusu -- Dalton, Nancy -- Peterson, Kirk L -- Race, Richard E -- Meade-White, Kimberly -- Portis, John L -- Masliah, Eliezer -- Knowlton, Kirk U -- Chesebro, Bruce -- Oldstone, Michael B A -- 5R01HL66424-04/HL/NHLBI NIH HHS/ -- AGO4342/PHS HHS/ -- NS041219-05/NS/NINDS NIH HHS/ -- P01 AG004342/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 7;313(5783):94-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Viral-Immunobiology Laboratory, Departments of Molecular and Integrative Neurosciences and Infectology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16825571" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*analysis ; Amyloidosis/blood/etiology/*pathology/physiopathology ; Animals ; Blotting, Western ; Cardiac Catheterization ; Coronary Vessels/chemistry/pathology ; Disease Models, Animal ; Glycosylphosphatidylinositols ; Heart Diseases/blood/etiology/*pathology/physiopathology ; Heart Function Tests ; Immunohistochemistry ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microcirculation/chemistry/pathology ; Myocardial Contraction ; Myocardium/*chemistry/*pathology ; PrPC Proteins/chemistry ; PrPSc Proteins/*analysis/blood ; Scrapie/blood/*pathology/physiopathology ; Staining and Labeling ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-19
    Description: The utility of ferroelectric materials stems from the ability to nucleate and move polarized domains using an electric field. To understand the mechanisms of polarization switching, structural characterization at the nanoscale is required. We used aberration-corrected transmission electron microscopy to follow the kinetics and dynamics of ferroelectric switching at millisecond temporal and subangstrom spatial resolution in an epitaxial bilayer of an antiferromagnetic ferroelectric (BiFeO(3)) on a ferromagnetic electrode (La(0.7)Sr(0.3)MnO(3)). We observed localized nucleation events at the electrode interface, domain wall pinning on point defects, and the formation of ferroelectric domains localized to the ferroelectric and ferromagnetic interface. These results show how defects and interfaces impede full ferroelectric switching of a thin film.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, Christopher T -- Gao, Peng -- Jokisaari, Jacob R -- Heikes, Colin -- Adamo, Carolina -- Melville, Alexander -- Baek, Seung-Hyub -- Folkman, Chad M -- Winchester, Benjamin -- Gu, Yijia -- Liu, Yuanming -- Zhang, Kui -- Wang, Enge -- Li, Jiangyu -- Chen, Long-Qing -- Eom, Chang-Beom -- Schlom, Darrell G -- Pan, Xiaoqing -- New York, N.Y. -- Science. 2011 Nov 18;334(6058):968-71. doi: 10.1126/science.1206980.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096196" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-01-10
    Description: The interleukin-1beta (IL-1beta) converting enzyme (ICE) processes the inactive IL-1beta precursor to the proinflammatory cytokine. ICE was also shown to cleave the precursor of interferon-gamma inducing factor (IGIF) at the authentic processing site with high efficiency, thereby activating IGIF and facilitating its export. Lipopolysaccharide-activated ICE-deficient (ICE-/-) Kupffer cells synthesized the IGIF precursor but failed to process it into the active form. Interferon-gamma and IGIF were diminished in the sera of ICE-/- mice exposed to Propionibacterium acnes and lipopolysaccharide. The lack of multiple proinflammatory cytokines in ICE-/- mice may account for their protection from septic shock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Y -- Kuida, K -- Tsutsui, H -- Ku, G -- Hsiao, K -- Fleming, M A -- Hayashi, N -- Higashino, K -- Okamura, H -- Nakanishi, K -- Kurimoto, M -- Tanimoto, T -- Flavell, R A -- Sato, V -- Harding, M W -- Livingston, D J -- Su, M S -- New York, N.Y. -- Science. 1997 Jan 10;275(5297):206-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vertex Pharmaceuticals, Inc., 130 Waverly Street, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8999548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Caspase 1 ; Caspase 3 ; *Caspases ; Caspases, Initiator ; Culture Media, Conditioned ; Cysteine Endopeptidases/*metabolism ; Cytokines/blood/*metabolism/pharmacology ; Humans ; Interferon-gamma/biosynthesis/blood ; Interleukin-18 ; Kupffer Cells/*metabolism ; Lipopolysaccharides/pharmacology ; Mice ; Protein Precursors/metabolism ; Protein Processing, Post-Translational ; Recombinant Proteins/metabolism/pharmacology ; Spleen/cytology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2003-10-18
    Description: The Rho guanosine triphosphatases (GTPases) Rac1 and Rac2 are critical signaling regulators in mammalian cells. The deletion of both Rac1 and Rac2 murine alleles leads to a massive egress of hematopoietic stem/progenitor cells (HSC/Ps) into the blood from the marrow, whereas Rac1-/- but not Rac2-/- HSC/Ps fail to engraft in the bone marrow of irradiated recipient mice. In contrast, Rac2, but not Rac1, regulates superoxide production and directed migration in neutrophils, and in each cell type, the two GTPases play distinct roles in actin organization, cell survival, and proliferation. Thus, Rac1 and Rac2 regulate unique aspects of hematopoietic development and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Yi -- Filippi, Marie-Dominique -- Cancelas, Jose A -- Siefring, Jamie E -- Williams, Emily P -- Jasti, Aparna C -- Harris, Chad E -- Lee, Andrew W -- Prabhakar, Rethinasamy -- Atkinson, Simon J -- Kwiatkowski, David J -- Williams, David A -- DK62757/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 17;302(5644):445-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564009" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Apoptosis ; Bone Marrow Transplantation ; Cell Adhesion ; Cell Cycle ; Cell Movement ; Cell Size ; Colony-Forming Units Assay ; Cyclin D1/metabolism ; Fibronectins/metabolism ; Hematopoiesis ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*physiology ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mitogen-Activated Protein Kinases/metabolism ; Neutrophils/*physiology ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Recombination, Genetic ; Signal Transduction ; Stem Cell Factor/pharmacology ; Superoxides/metabolism ; rac GTP-Binding Proteins/genetics/*metabolism ; rac1 GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-21
    Description: Despite appearing featureless to our eyes, the open ocean is a highly variable environment for polarization-sensitive viewers. Dynamic visual backgrounds coupled with predator encounters from all possible directions make this habitat one of the most challenging for camouflage. We tested open-ocean crypsis in nature by collecting more than 1500 videopolarimetry measurements from live fish from distinct habitats under a variety of viewing conditions. Open-ocean fish species exhibited camouflage that was superior to that of both nearshore fish and mirrorlike surfaces, with significantly higher crypsis at angles associated with predator detection and pursuit. Histological measurements revealed that specific arrangements of reflective guanine platelets in the fish's skin produce angle-dependent polarization modifications for polarocrypsis in the open ocean, suggesting a mechanism for natural selection to shape reflectance properties in this complex environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brady, Parrish C -- Gilerson, Alexander A -- Kattawar, George W -- Sullivan, James M -- Twardowski, Michael S -- Dierssen, Heidi M -- Gao, Meng -- Travis, Kort -- Etheredge, Robert Ian -- Tonizzo, Alberto -- Ibrahim, Amir -- Carrizo, Carlos -- Gu, Yalong -- Russell, Brandon J -- Mislinski, Kathryn -- Zhao, Shulei -- Cummings, Molly E -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):965-9. doi: 10.1126/science.aad5284. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of Texas, Austin, TX 78712, USA. ; Optical Remote Sensing Laboratory, the City College of New York-CUNY, New York, NY 10031, USA. ; Department of Physics and Astronomy and Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843-4242, USA. ; Harbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL 34946, USA. ; Department of Marine Sciences, University of Connecticut Avery Point, 1080 Shennecossett Road, Groton, CT 06340-6048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586762" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Mimicry ; Blood Platelets/cytology ; Ecosystem ; Fishes/*physiology ; Oceans and Seas ; Predatory Behavior ; *Selection, Genetic ; Skin/anatomy & histology/blood supply ; Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-19
    Description: The enhancement of the functional properties of materials at reduced dimensions is crucial for continuous advancements in nanoelectronic applications. Here, we report that the scale reduction leads to the emergence of an important functional property, ferroelectricity, challenging the long-standing notion that ferroelectricity is inevitably suppressed at the scale of a few nanometers. A combination of theoretical calculations, electrical measurements, and structural analyses provides evidence of room-temperature ferroelectricity in strain-free epitaxial nanometer-thick films of otherwise nonferroelectric strontium titanate (SrTiO3). We show that electrically induced alignment of naturally existing polar nanoregions is responsible for the appearance of a stable net ferroelectric polarization in these films. This finding can be useful for the development of low-dimensional material systems with enhanced functional properties relevant to emerging nanoelectronic devices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, D -- Lu, H -- Gu, Y -- Choi, S-Y -- Li, S-D -- Ryu, S -- Paudel, T R -- Song, K -- Mikheev, E -- Lee, S -- Stemmer, S -- Tenne, D A -- Oh, S H -- Tsymbal, E Y -- Wu, X -- Chen, L-Q -- Gruverman, A -- Eom, C B -- New York, N.Y. -- Science. 2015 Sep 18;349(6254):1314-7. doi: 10.1126/science.aaa6442.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA. ; Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, USA. ; Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 USA. ; Department of Materials Modeling and Characterization, Korea Institute of Materials Science, Changwon 642-831, Korea. ; Department of Physics, Temple University, Philadelphia, PA 19122, USA. ; Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea. ; Materials Department, University of California-Santa Barbara, Santa Barbara, CA 93106-5050, USA. ; Department of Physics, Boise State University, Boise, ID 83725-1570, USA. ; Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, USA. agruverman2@unl.edu eom@engr.wisc.edu. ; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA. agruverman2@unl.edu eom@engr.wisc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26383947" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-01-19
    Description: A sharp increase in the frequency of earthquakes near Fox Creek, Alberta, began in December 2013 in response to hydraulic fracturing. Using a hydraulic fracturing database, we explore relationships between injection parameters and seismicity response. We show that induced earthquakes are associated with completions that used larger injection volumes (10 4 to 10 5 cubic meters) and that seismic productivity scales linearly with injection volume. Injection pressure and rate have an insignificant association with seismic response. Further findings suggest that geological factors play a prominent role in seismic productivity, as evidenced by spatial correlations. Together, volume and geological factors account for ~96% of the variability in the induced earthquake rate near Fox Creek. This result is quantified by a seismogenic index–modified frequency-magnitude distribution, providing a framework to forecast induced seismicity.
    Keywords: Geochemistry, Geophysics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...