ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Conformation  (4)
  • American Association for the Advancement of Science (AAAS)  (4)
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction. Early studies suggested that these molecular motors work by very different mechanisms. Recently, however, it has become clear that kinesin and myosin share a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy. Many different types of mechanical amplifiers have evolved that operate in conjunction with the conserved core. This modular design has given rise to a remarkable diversity of kinesin and myosin motors whose motile properties are optimized for performing distinct biological functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vale, R D -- Milligan, R A -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):88-95.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA. vale@phy.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753125" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; Cytoskeleton/metabolism ; Evolution, Molecular ; Kinesin/chemistry/*physiology ; Microtubules/metabolism ; Models, Biological ; Models, Molecular ; Molecular Motor Proteins/chemistry/*physiology ; Myosins/chemistry/*physiology ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-12-09
    Description: The three-dimensional structure of an active, disulfide cross-linked dimer of the ligand-binding domain of the Salmonella typhimurium aspartate receptor and that of an aspartate complex have been determined by x-ray crystallographic methods at 2.4 and 2.0 angstrom (A) resolution, respectively. A single subunit is a four-alpha-helix bundle with two long amino-terminal and carboxyl-terminal helices and two shorter helices that form a cylinder 20 A in diameter and more than 70 A long. The two subunits in the disulfide-bonded dimer are related by a crystallographic twofold axis in the apo structure, but by a noncrystallographic twofold axis in the aspartate complex structure. The latter structure reveals that the ligand binding site is located more than 60 A from the presumed membrane surface and is at the interface of the two subunits. Aspartate binds between two alpha helices from one subunit and one alpha helix from the other in a highly charged pocket formed by three arginines. The comparison of the apo and aspartate complex structures shows only small structural changes in the individual subunits, except for one loop region that is disordered, but the subunits appear to change orientation relative to each other. The structures of the two forms of this protein provide a step toward understanding the mechanisms of transmembrane signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milburn, M V -- Prive, G G -- Milligan, D L -- Scott, W G -- Yeh, J -- Jancarik, J -- Koshland, D E Jr -- Kim, S H -- AI 30725/AI/NIAID NIH HHS/ -- DK09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 29;254(5036):1342-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1660187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aspartic Acid/metabolism ; Binding Sites ; Disulfides/analysis ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; *Receptors, Amino Acid ; Receptors, Cell Surface/*chemistry/metabolism ; Salmonella typhimurium/metabolism ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-12-23
    Description: Receptors that transmit signals across cell membranes are typically composed of multiple subunits. To test whether subunit interactions are required for transmembrane signaling by the bacterial aspartate receptor, dimers were constructed with (i) two full-length subunits, (ii) one full-length subunit and one subunit lacking the cytoplasmic domain, or (iii) one full-length subunit and one subunit lacking both the cytoplasmic and the transmembrane domains. Methylation of the cytoplasmic domain of all three receptor constructs was stimulated by the binding of aspartate. These findings demonstrate that transmembrane signaling does not require interactions between cytoplasmic or transmembrane domains of adjacent subunits and suggest that signaling occurs via conformational changes transduced through a single subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milligan, D L -- Koshland, D E Jr -- DK 09765/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 13;254(5038):1651-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1661030" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid/*physiology ; DNA Mutational Analysis ; Ligands ; Macromolecular Substances ; Methylation ; Protein Conformation ; *Receptors, Amino Acid ; Receptors, Cell Surface/*chemistry ; Recombinant Proteins ; Salmonella typhimurium ; Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-10-30
    Description: Ribosomes are self-assembling macromolecular machines that translate DNA into proteins, and an understanding of ribosome biogenesis is central to cellular physiology. Previous studies on the Escherichia coli 30S subunit suggest that ribosome assembly occurs via multiple parallel pathways rather than through a single rate-limiting step, but little mechanistic information is known about this process. Discovery single-particle profiling (DSP), an application of time-resolved electron microscopy, was used to obtain more than 1 million snapshots of assembling 30S subunits, identify and visualize the structures of 14 assembly intermediates, and monitor the population flux of these intermediates over time. DSP results were integrated with mass spectrometry data to construct the first ribosome-assembly mechanism that incorporates binding dependencies, rate constants, and structural characterization of populated intermediates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulder, Anke M -- Yoshioka, Craig -- Beck, Andrea H -- Bunner, Anne E -- Milligan, Ronald A -- Potter, Clinton S -- Carragher, Bridget -- Williamson, James R -- GM-52468/GM/NIGMS NIH HHS/ -- P41 RR017573/RR/NCRR NIH HHS/ -- P41 RR017573-10/RR/NCRR NIH HHS/ -- R01 GM052468/GM/NIGMS NIH HHS/ -- R01 GM052468-16/GM/NIGMS NIH HHS/ -- R01 RR023093/RR/NCRR NIH HHS/ -- R01 RR023093-09/RR/NCRR NIH HHS/ -- R37 GM053757/GM/NIGMS NIH HHS/ -- R37 GM053757-16/GM/NIGMS NIH HHS/ -- R37-GM-53757/GM/NIGMS NIH HHS/ -- RR023093/RR/NCRR NIH HHS/ -- RR175173/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):673-7. doi: 10.1126/science.1193220.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030658" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Image Processing, Computer-Assisted ; Kinetics ; Mass Spectrometry ; Microscopy, Electron/methods ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; RNA, Bacterial/chemistry ; RNA, Ribosomal/chemistry ; Ribosomal Proteins/chemistry/*metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/*metabolism/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...