ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (2)
  • American Association for the Advancement of Science (AAAS)  (2)
  • 1
    Publication Date: 2003-04-12
    Description: The CD8+ cytotoxic T cell response to pathogens is thought to be CD4+ helper T cell independent because infectious agents provide their own inflammatory signals. Mice that lack CD4+ T cells mount a primary CD8 response to Listeria monocytogenes equal to that of wild-type mice and rapidly clear the infection. However, protective memory to a challenge is gradually lost in the former animals. Memory CD8+ T cells from normal mice can respond rapidly, but memory CD8+ T cells that are generated without CD4 help are defective in their ability to respond to secondary encounters with antigen. The results highlight a previously undescribed role for CD4 help in promoting protective CD8 memory development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778341/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778341/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Joseph C -- Bevan, Michael J -- AI 19335/AI/NIAID NIH HHS/ -- R01 AI019335/AI/NIAID NIH HHS/ -- R01 AI019335-19/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):339-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and the Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690202" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Animals ; CD8-Positive T-Lymphocytes/*immunology/transplantation ; Cytotoxicity, Immunologic ; Genes, MHC Class II ; Immunization ; *Immunologic Memory ; Interferon-gamma/biosynthesis ; Listeria monocytogenes/genetics/immunology ; Listeriosis/*immunology ; Mice ; Mice, Inbred C57BL ; Ovalbumin/biosynthesis/genetics/immunology ; T-Lymphocyte Subsets/immunology ; T-Lymphocytes, Helper-Inducer/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-08-25
    Description: In mammals, the canonical nuclear factor kappaB (NF-kappaB) signaling pathway activated in response to infections is based on degradation of IkappaB inhibitors. This pathway depends on the IkappaB kinase (IKK), which contains two catalytic subunits, IKKalpha and IKKbeta. IKKbeta is essential for inducible IkappaB phosphorylation and degradation, whereas IKKalpha is not. Here we show that IKKalpha is required for B cell maturation, formation of secondary lymphoid organs, increased expression of certain NF-kappaB target genes, and processing of the NF-kappaB2 (p100) precursor. IKKalpha preferentially phosphorylates NF-kappaB2, and this activity requires its phosphorylation by upstream kinases, one of which may be NF-kappaB-inducing kinase (NIK). IKKalpha is therefore a pivotal component of a second NF-kappaB activation pathway based on regulated NF-kappaB2 processing rather than IkappaB degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Senftleben, U -- Cao, Y -- Xiao, G -- Greten, F R -- Krahn, G -- Bonizzi, G -- Chen, Y -- Hu, Y -- Fong, A -- Sun, S C -- Karin, M -- AI434477/AI/NIAID NIH HHS/ -- AI45045/AI/NIAID NIH HHS/ -- ESO4151/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1495-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520989" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology/*physiology ; Bone Marrow Cells/metabolism ; Evolution, Molecular ; Female ; Gene Expression Regulation ; Germinal Center ; I-kappa B Kinase ; I-kappa B Proteins/metabolism ; Immunoglobulin D/analysis ; Lipopolysaccharides/pharmacology ; Lymph Nodes/cytology/immunology ; Lymphoid Tissue/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; NF-kappa B/*metabolism ; NF-kappa B p52 Subunit ; Phosphorylation ; Protein Processing, Post-Translational ; Protein-Serine-Threonine Kinases/*metabolism ; Radiation Chimera ; Recombinant Proteins/metabolism ; *Signal Transduction ; Spleen/cytology/immunology ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...