ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Genetics Society of America (GSA)  (2)
  • American Association for the Advancement of Science (AAAS)  (1)
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2014-04-17
    Beschreibung: Identification of genes underlying agronomic traits is dependent on the segregation of quantitative trait loci (QTL). A popular hypothesis is that elite lines are becoming increasingly similar to each other, resulting in large genomic regions with fixed genes. Here, we resequenced two parental modern elite soybean lines [ ZhongHuang13 (ZH) and ZhongPin03-5373 (ZP)] and discovered 794,876 SNPs with reference to the published Williams82 genome. SNPs were distributed unevenly across the chromosomes, with 87.1% of SNPs clustering in 4.9% of the soybean reference genome. Most of the regions with a high density of SNP polymorphisms were located in the chromosome arms. Moreover, seven large regions that were highly similar between parental lines were identified. A GoldenGate SNP genotyping array was designed using 384 SNPs and the 254 recombinant inbred lines (F 8 ) derived from the cross of ZP x ZH were genotyped. We constructed a genetic linkage map using a total of 485 molecular markers, including 313 SNPs from the array, 167 simple sequence repeats (SSRs), 4 expressed sequence tag–derived SSRs, and 1 insertion/deletion marker. The total length of the genetic map was 2594.34 cM, with an average marker spacing of 5.58 cM. Comparing physical and genetic distances, we found 20 hotspot and 14 coldspot regions of recombination. Our results suggest that the technology of resequencing of parental lines coupled with high-throughput SNP genotyping could efficiently bridge the genotyping gap and provide deep insights into the landscape of recombination and fixed genomic regions in biparental segregating populations of soybean with implications for fine mapping of QTL.
    Digitale ISSN: 2160-1836
    Thema: Biologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publikationsdatum: 2017-09-15
    Schlagwort(e): Neuroscience
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Geologie und Paläontologie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-05-05
    Beschreibung: Genome-wide prediction approaches represent versatile tools for the analysis and prediction of complex traits. Mostly they rely on marker-based information, but scenarios have been reported in which models capitalizing on closely-linked markers that were combined into haplotypes outperformed marker-based models. Detailed comparisons were undertaken to reveal under which circumstances haplotype-based genome-wide prediction models are superior to marker-based models. Specifically, it was of interest to analyze whether and how haplotype-based models may take local epistatic effects between markers into account. Assuming that populations consisted of fully homozygous individuals, a marker-based model in which local epistatic effects inside haplotype blocks were exploited (LEGBLUP) was linearly transformable into a haplotype-based model (HGBLUP). This theoretical derivation formally revealed that haplotype-based genome-wide prediction models capitalize on local epistatic effects among markers. Simulation studies corroborated this finding. Due to its computational efficiency the HGBLUP model promises to be an interesting tool for studies in which ultra-high-density SNP data sets are studied. Applying the HGBLUP model to empirical data sets revealed higher prediction accuracies than for marker-based models for both traits studied using a mouse panel. In contrast, only a small subset of the traits analyzed in crop populations showed such a benefit. Cases in which higher prediction accuracies are observed for HGBLUP than for marker-based models are expected to be of immediate relevance for breeders, due to the tight linkage a beneficial haplotype will be preserved for many generations. In this respect the inheritance of local epistatic effects very much resembles the one of additive effects.
    Digitale ISSN: 2160-1836
    Thema: Biologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...