ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 55 (1989), S. 772-774 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Continuous and pulsed photoluminescence experiments in GaSb/AlSb multiple quantum wells have been performed before and after exposure to hydrogen. An appreciable increase in the emission efficiency has been observed for H ion doses as low as 1013/cm2. Since the results cannot be accounted for in terms of the plain passivation of nonradiative centers, the effect is ascribed mostly to a change in the mechanism of carrier relaxation within the lower end of the bound-state distribution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 55 (1989), S. 933-935 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have performed picosecond time-resolved measurements on In0.53Ga0.47As/InP quantum wells with varying barrier thicknesses using 10 ps Nd:YAG excitation. For this excitation, holes and electrons are created in the In0.53Ga0.47As layers. Due to momentum conservation the Nd:YAG excitation accelerates the electrons above the InP barrier where they can diffuse but cannot recombine. By examining the rise time of the quantum well emission, we can show that for samples with thick barriers, the barrier geometry largely controls the dynamic properties of the carriers after Nd:YAG excitation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 1087-1095 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A new technique of the simultaneous excitation of a magnetron sputtering discharge by rf and dc was used for the deposition of undoped ZnO- and Al-doped ZnO (ZnO:Al) films. By this technique, it was possible to change the ion-to-neutral ratio ji/jn on the substrates during the film growth by more than a factor of ten, which was revealed by plasma monitor and Langmuir probe measurements. While for a pure dc discharge the ions impinging onto a floating substrate have energies of about Ei(approximate)17 eV, the rf discharge is characterized by Ar-ion energies of about 35 eV. Furthermore, the ion current density for the rf excitation is higher by a factor of about five, which is caused by the higher plasma density in front of the substrate. This leads to a much higher ion-to-neutral ratio ji/jn on the growing film in the case of the rf discharge, which strongly influences the structural and electrical properties of the ZnO(:Al) films. The rf-grown films exhibit about the three times lower specific resistances (ρ(approximate)6×10−4 Ω cm), due to lower mechanical stress, leading to higher charge carrier concentrations and mobilities. Undoped ZnO films exhibited the largest compressive stress values up to 2.8 GPa. The aluminium-doped films have a better (001) texture and larger grains (dg(approximate)38 nm), which can be attributed to the beneficial role of Al as a surfactant. The better crystalline film quality of the ZnO:Al films is the reason for the much lower compressive stress of 〈0.5 GPa in these layers. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-01
    Description: The inefficient clearance of dying cells can lead to abnormal immune responses, such as unresolved inflammation and autoimmune conditions. We show that tumor suppressor p53 controls signaling-mediated phagocytosis of apoptotic cells through its target, Death Domain1alpha (DD1alpha), which suggests that p53 promotes both the proapoptotic pathway and postapoptotic events. DD1alpha appears to function as an engulfment ligand or receptor that engages in homophilic intermolecular interaction at intercellular junctions of apoptotic cells and macrophages, unlike other typical scavenger receptors that recognize phosphatidylserine on the surface of dead cells. DD1alpha-deficient mice showed in vivo defects in clearing dying cells, which led to multiple organ damage indicative of immune dysfunction. p53-induced expression of DD1alpha thus prevents persistence of cell corpses and ensures efficient generation of precise immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, Kyoung Wan -- Byun, Sanguine -- Kwon, Eunjeong -- Hwang, So-Young -- Chu, Kiki -- Hiraki, Masatsugu -- Jo, Seung-Hee -- Weins, Astrid -- Hakroush, Samy -- Cebulla, Angelika -- Sykes, David B -- Greka, Anna -- Mundel, Peter -- Fisher, David E -- Mandinova, Anna -- Lee, Sam W -- CA142805/CA/NCI NIH HHS/ -- CA149477/CA/NCI NIH HHS/ -- CA80058/CA/NCI NIH HHS/ -- DK062472/DK/NIDDK NIH HHS/ -- DK091218/DK/NIDDK NIH HHS/ -- DK093378/DK/NIDDK NIH HHS/ -- DK57683/DK/NIDDK NIH HHS/ -- S10RR027673/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):1261669. doi: 10.1126/science.1261669.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. ; Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA. ; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. ; Center for Regenerative Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. ; Department of Medicine, Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA. ; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. swlee@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis/genetics/*immunology ; Autoimmune Diseases/genetics/immunology ; Cell Line, Tumor ; Female ; Humans ; Inflammation/genetics/immunology ; Macrophages/immunology ; Male ; Membrane Proteins/genetics/*metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Phagocytosis/*immunology ; Phosphatidylserines/*metabolism ; Signal Transduction ; Tumor Suppressor Protein p53/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...