ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-30
    Description: The Neruokpuk Formation is a Neoproterozoic and Cambrian turbiditic succession in northwesternmost Yukon (Canada) and northeastern Alaska (USA), part of a latest Proterozoic to Early Devonian slope and basin succession that is correlated in detail with strata in Selwyn Basin of the northern Canadian Cordillera. It includes quartz-lithic sandstone, locally containing altered detrital feldspar and muscovite indicating that a metamorphic source contributed detritus to the unit. The muscovite yields disturbed Ar-Ar spectra suggesting ages of 1800–1900 Ma. Detrital zircon distributions are dominated by 1800–2000 Ma grains with subsidiary populations of 1000–1600 Ma, 2300–2500 Ma and 2600–2800 Ma grains, consistent with a hybrid provenance dominated by a Laurentian cratonic source. Additional populations are derived from recycled Mackenzie Mountains and possibly Wernecke Supergroups. Integrating the geochronology with the regional stratigraphic setting, structural history, and geochemistry leads to the conclusion that the Neruokpuk Formation was deposited near its present location as part of the autochthonous northwest Laurentian continental margin. Therefore, the eastern part of Arctic Alaska, underlain by the Neruokpuk Formation, has a history that is distinct from the allochthonous western part(s) of the Arctic Alaska terrane. However, the rest of Arctic Alaska is structurally and stratigraphically linked to the eastern part by Late Devonian time.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-24
    Description: We illustrate the potential for using physics-based modeling to link alluvial stratigraphy to large river morphology and dynamics. Model simulations, validated using ground penetrating radar data from the Río Paraná, Argentina, demonstrate a strong relationship between bar-scale set thickness and channel depth, which applies across a wide range of river patterns and bar types. We show that hydrologic regime, indexed by discharge variability and flood duration, exerts a first-order influence on morphodynamics and hence bar set thickness, and that planform morphology alone may be a misleading variable for interpreting deposits. Indeed, our results illustrate that rivers evolving under contrasting hydrologic regimes may have very similar morphology, yet be characterized by marked differences in stratigraphy. This realization represents an important limitation on the application of established theory that links river topography to alluvial deposits, and highlights the need to obtain field evidence of discharge variability when developing paleoenvironmental reconstructions. Model simulations demonstrate the potential for deriving such evidence using metrics of paleocurrent variance.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉Between 2003 and 2013, drought, large wildfires, and record-breaking rainfall contributed to debris flows in southeast Australia that appear to be unprecedented in spatial extent and density in historical records. Here, we used a debris-flow inventory from this period of dry and wet extremes to examine the processes and climatic controls underlying the regionwide debris-flow response. Results reveal shallow landslides and surface runoff as two distinct initiation mechanisms, linked to different geologic settings and contrasting hydroclimatic conditions. Landslide-generated debris flows occurred in sandy soils, independent of past fires, and were tightly controlled by extreme rainfall causing saturation and mass failure during La Niña periods. In contrast, runoff-generated debris flows occurred in clay-rich soils from short and intense rainstorms after wildfires in dry conditions, often associated with El Niño. Thus, it appears that both ends of the wet and dry climate extremes produce the same general geomorphic response, debris flows, but in different areas and by different initiation processes. Debris-flow activity is therefore at a maximum when amplitude and frequency of climate oscillations are large. Debris flows in southeast Australia are likely to become more frequent and widespread as wildfire activity and rainfall intensity are predicted to increase.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈span〉Between 2003 and 2013, drought, large wildfires, and record-breaking rainfall contributed to debris flows in southeast Australia that appear to be unprecedented in spatial extent and density in historical records. Here, we used a debris-flow inventory from this period of dry and wet extremes to examine the processes and climatic controls underlying the region-wide debris-flow response. Results reveal shallow landslides and surface runoff as two distinct initiation mechanisms, linked to different geologic settings and contrasting hydroclimatic conditions. Landslide-generated debris flows occurred in sandy soils, independent of past fires, and were tightly controlled by extreme rainfall causing saturation and mass failure during La Niña periods. In contrast, runoff-generated debris flows occurred in clay-rich soils from short and intense rainstorms after wildfires in dry conditions, often associated with El Niño. Thus, it appears that both ends of the wet and dry climate extremes produce the same general geomorphic response, debris flows, but in different areas and by different initiation processes. Debris-flow activity is therefore at a maximum when amplitude and frequency of climate oscillations are large. Debris flows in southeast Australia are likely to become more frequent and widespread as wildfire activity and rainfall intensity are predicted to increase.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-22
    Description: Knowledge of regional variations in response to abrupt climatic transitions is essential to understanding the climate system and anticipating future changes. Global climate models typically assume that major climatic changes occur synchronously over continental to hemispheric distances. The last major reorganization of the ocean-atmosphere system in the North Atlantic realm took place during the Younger Dryas (YD), an ~1100 yr cold period at the end of the last glaciation. Within this region, several terrestrial records of the YD show at least two phases, an initial cold phase followed by a second phase of climatic amelioration related to a resumption of North Atlantic overturning. We show that the onset of climatic amelioration during the YD cold period was locally abrupt, but time-transgressive across Europe. Atmospheric proxy signals record the resumption of thermohaline circulation midway through the Younger Dryas, occurring 100 yr before deposition of ash from the Icelandic Vedde eruption in a German varve lake record, and 20 yr after the same isochron in western Norway, 1350 km farther north. Synchronization of two high-resolution continental records, using the Vedde Ash layer (12,140 ± 40 varve yr B.P.), allows us to trace the shifting of the polar front as a major control of regional climate amelioration during the YD in the North Atlantic realm. It is critical that future climate models are able to resolve such small spatial and chronological differences in order to properly encapsulate complex regional responses to global climate change.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-27
    Description: The Phanerozoic tectonic evolution of the Arctic is a field of escalating scientific interest. Detrital zircon provenance studies provide vital contributions to clarify the region’s tectonic evolution. Northwest Laurentia exposes a broad expanse of Proterozoic and Paleozoic sedimentary strata for which detrital zircon populations are poorly characterized. Moreover, the significance of sedimentary recycling is becoming better appreciated in light of detrital zircon studies. As more data become available, our understanding of the detrital zircon character of NW Laurentia improves, providing an increasingly reliable baseline at subcontinental resolution against which potentially allochthonous terranes, such as Arctic Alaska, can be assessed. Sandstones of late Neoproterozoic and Cambrian age from NW Canada yield detrital zircon signatures dominated by zircon grains recycled from Proterozoic sedimentary strata. Two Neoproterozoic sandstones from the northern Mackenzie Mountains yield zircon populations sourced from the Mackenzie Mountains Supergroup. Two Lower Cambrian sandstones sourced from the Yukon stable block and deposited in Richardson Trough have zircon populations nearly identical to those of the upper Wernecke Supergroup, locally exposed across the southern Yukon stable block, where they are unconformably overlain by Cambrian strata. Comparisons with similar studies from NW Canada permit generalizations of the patterns of zircon recycling. Four provenance lineages are described that characterize Laurentia-derived successions in NW Canada.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-11-02
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 1980-06-06
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 1986-01-10
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...