ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (31)
  • American Association for the Advancement of Science  (12)
  • 1995-1999  (37)
  • 1930-1934  (6)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 10 (1998), S. 237-245 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Simulations of decaying compressible turbulent flows have been performed using the PPM algorithm on grids of 5123 and 10243 computational cells. Although the run on the finer grid has not yet been carried out to a time large enough for the spectra to relax fully, it adds significantly to the results on the coarser grid by lengthening the range of wave numbers in which the flow exhibits a self-similar character. There is an inertial range of scales in the decaying flow on the finer mesh that is free from direct effects of dissipation, forcing, boundary conditions, or initial conditions. Favre averaging of the high resolution data is performed on different scales from which the vorticity structures in the inertial range may be visualized and characterized without confusion from the smaller-scale features of the near dissipation range. We find that the vorticity structures of the inertial range are filamentary as well, but qualitatively different—shorter and more curved—than those of the dissipation range. Quantitative evidence of the action of vortex stretching in developed turbulence is also presented. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 1410-1422 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Characterization of the plasma density and temperature at the last closed flux surface (the separatrix) of a tokamak requires accurate knowledge of the location of the separatrix. In this paper we discuss the effect of inaccuracy in the separatrix location on the measured parameters in DIII-D [Luxon et al., International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986), p. 159] An uncertainty in the separatrix position of ±0.5 cm, as expected in this device using magnetic reconstruction to determine the location of the separatrix, leads to unacceptably large uncertainty in the plasma parameters. Several techniques to improve the accuracy obtained from magnetic reconstruction are discussed. A new technique that is based on a characterization of the electron temperature profile is proposed. A comparison of the separatrix location defined in this manner with that obtained using magnetic reconstruction techniques suggests a systematic error in the reconstruction when the plasma is far from the walls and magnetic diagnostics. Determination of the perpendicular transport coefficients is given as an example of the improved statistics obtained using the new technique of defining the separatrix position.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The radiation of divertor heat flux on DIII-D [J. Luxon et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1987), p. 159] is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low-Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction-dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE [T. Rognlien, J. L. Milovich, M. E. Rensink, and G. D. Porter, J. Nucl. Mater. 196–198, 347 (1992)] has reproduced many of the observed experimental features. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 5 (1998), S. 4311-4320 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The importance of radial particle flow on the power flowing across the last closed flux surface (separatrix) in DIII-D [Luxon et al., International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986), Vol. I, p. 159] is considered. The perpendicular thermal diffusivity at the separatrix is near 1 m2/s in low confinement operation (L-mode), and 0.1 m2/s in high confinement (H-mode). The particle diffusivity is about one-fourth of the thermal diffusivity producing radial particle fluxes of the order of kilo-amperes. The particle flux is 10 to 100 times the particle input from neutral beam sources, consistent with core fueling being dominated by neutral recycling. The radial particle flux scales with the neutral pressure in the private flux region, suggesting the core is fueled predominantly from neutrals which recycle from the divertor, through the private flux, and into the core near the singular point where the poloidal field is zero (X-point). There is significant core power loss associated with the large particle flux across the separatrix. The electron temperature measured at the top of the edge pedestal in H-mode operation scales inversely with the particle flux. In turn, the core energy confinement scales with the pedestal temperature, and hence inversely with the particle flux. The results presented here indicate the global particle confinement time is between 0.5 and 2 times the global energy confinement time. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A two-dimensional calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses classical processes of parallel transport along the magnetic field and cross-field drifts together with anomalous radial diffusion, including perpendicular ion viscosity. The self-consistent electrostatic potential is calculated on both sides of the magnetic separatrix via quasineutrality and current continuity. Outside the separatrix, the model extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms—from anomalous viscosity, collisional damping, inertia, and ∇B drifts—contribute to determining the potential. The model rigorously enforces cancellation of gyroviscous and magnetization terms from the transport equations. The results emphasize the importance of E×B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field profiles at the outer midplane show strong variation with the magnitude of the anomalous diffusion coefficients and the core toroidal rotation velocity, indicating that shear stabilization of edge turbulence can likewise be sensitive to these parameters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Here Z, a 60 TW/5 MJ electrical accelerator located at Sandia National Laboratories, has been used to implode tungsten wire-array Z pinches. These arrays consisted of large numbers of tungsten wires (120–300) with wire diameters of 7.5 to 15 μm placed in a symmetric cylindrical array. The experiments used array diameters ranging from 1.75 to 4 cm and lengths from 1 to 2 cm. A 2 cm long, 4 cm diam tungsten array consisting of 240, 7.5 μm diam wires (4.1 mg mass) achieved an x-ray power of ∼200 TW and an x-ray energy of nearly 2 MJ. Spectral data suggest an optically thick, Planckian-like radiator below 1000 eV. One surprising experimental result was the observation that the total radiated x-ray energies and x-ray powers were nearly independent of pinch length. These data are compared with two-dimensional radiation magnetohydrodynamic code calculations. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The introduction of a divertor Thomson scattering system in DIII-D [J. Luxon et al., International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1986), p. 159] has enabled accurate determination of the plasma properties in the divertor region. Two plasma regimes are identified: detached and attached. The electron temperature in the detached regime is about 2 eV, much lower than 5–10 eV determined earlier. Fluid models of the DIII-D scrape-off layer plasma successfully reproduce many of the features of these two regimes, including the boundaries for transition between them. Detailed comparison between the results obtained from the fluid models and experiment suggest the models underestimate the spatial extent of the low-temperature region associated with the detached plasma mode. Low-temperature atomic physics processes that are not included in the present models may account for this discrepancy. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nearly 10 years of Nova [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] experiments and analysis have lead to a relatively detailed quantitative and qualitative understanding of radiation drive in laser-heated hohlraums. Our most successful quantitative modeling tool is two-dimensional (2-D) LASNEX numerical simulations [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 51 (1975)]. Analysis of the simulations provides us with insight into the physics of hohlraum drive. In particular we find hohlraum radiation conversion efficiency becomes quite high with longer pulses as the accumulated, high-Z blow-off plasma begins to radiate. Extensive Nova experiments corroborate our quantitative and qualitative understanding. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Saturn pulsed power accelerator [R. B. Spielman et al., in Proceedings of the 2nd International Conference on Dense Z-pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] at Sandia National Laboratories (SNL) and the Nova laser [J. T. Hunt and D. R. Speck, Opt. Eng. 28, 461 (1989)] at Lawrence Livermore National Laboratory (LLNL) have been used to explore techniques for studying the behavior of ablator material in x-ray radiation environments comparable in magnitude, spectrum, and duration to those that would be experienced in National Ignition Facility (NIF) hohlraums [J. D. Lindl, Phys. Plasmas 2, 3933 (1995)]. The large x-ray outputs available from the Saturn pulsed-power-driven z pinch have enabled us to drive hohlraums of full NIF ignition scale size at radiation temperatures and time scales comparable to those required for the low-power foot pulse of an ignition capsule. The high-intensity drives available in the Nova laser have allowed us to study capsule ablator physics in smaller-scale hohlraums at radiation temperatures and time scales relevant to the peak power pulse for an ignition capsule. Taken together, these experiments have pointed the way to possible techniques for testing radiation-hydrodynamics code predictions of radiation flow, opacity, equation of state, and ablator shock velocity over the range of radiation environments that will be encountered in a NIF hohlraum. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 5816-5818 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Magnetization reversal modes and coercivities were calculated for a magnetic particle with thickness : width : length aspect ratios 0.1 : 1 : 5 as a function of the reduced particle width d/lex, where d is the particle width and lex is the intrinsic magnetostatic exchange length. With only exchange energy and magnetostatic energy included, the particle corresponds to μMAG standard problem No. 2. The problem is modeled with two-dimensional grids of three-dimensional spins, and the results are compared for two methods of calculating magnetostatic energies, the "constant magnetization" method and the "constant charge" method. For both magnetostatic computational methods, the coercivity decreases from Hc/Ms=0.06±0.003 to 0.014±0.003 over the range 3〈d/lex〈80, where the uncertainties reflect the field step size. Also over this interval, as d/lex increases, the magnetization exhibits three modes of reversal: nearly uniform rotation, transverse switching of end domains followed by propagation of head-to-head domain walls from the ends to the center of the particle, and nucleation and propagation of vortices accompanied by more complex domain structures. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...