ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2019. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 146(6), (2019): 4699, doi: 10.1121/1.5139406.
    Description: The sound energy from marine mammal populations vocalizing over extended periods of time adds up to quasi-continuous “choruses,” which create characteristic peaks in marine sound spectra. An approach to estimate animal distribution is presented, which uses chorus recordings from very sparse unsynchronized arrays in ocean areas that are too large or remote to survey with traditional methods. To solve this under-determined inverse problem, simulated annealing is used to estimate the distribution of vocalizing animals on a geodesic grid. This includes calculating a transmission loss (TL) matrix, which connects all grid nodes and recorders. Geometrical spreading and the ray trace model BELLHOP [Porter (1987). J. Acoust. Soc. Am. 82(4), 1349–1359] were implemented. The robustness of the proposed method was tested with simulated marine mammal distributions in the Atlantic sector of the Southern Ocean using both drifting acoustic recorders [Argo (2018). SEANOE] and a moored array as acoustic receivers. The results show that inversion accuracy mainly depends on the number and location of the recorders, and can be predicted using the entropy and range of the estimated source distributions. Tests with different TL models indicated that inversion accuracy is affected only slightly by inevitable inaccuracies in TL models. The presented method could also be applied to bird, crustacean, and insect choruses.
    Description: We would like to thank Randi Ingvaldsen and the Institute of Marine Research for providing supervision, funding (Research council of Norway Grant No. 228896), and scientific freedom to S.M., and the Office of Naval Research for funding D.Z. with Grant No. N00014-18-1-2811. We also thank the reviewers and Len Thomas for their feedback. The authors declare no competing interests.
    Description: 2020-06-30
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bonnel, J., Kinda, G. B., & Zitterbart, D. P. Low-frequency ocean ambient noise on the Chukchi Shelf in the changing Arctic. Journal of the Acoustical Society of America, 149(6), (2021): 4061–4072, https://doi.org/10.1121/10.0005135.
    Description: This article presents the study of a passive acoustic dataset recorded on the Chukchi Shelf from October 2016 to July 2017 during the Canada Basin Acoustic Propagation Experiment (CANAPE). The study focuses on the low-frequency (250–350 Hz) ambient noise (after individual transient signals are removed) and its environmental drivers. A specificity of the experimental area is the Beaufort Duct, a persistent warm layer intrusion of variable extent created by climate change, which favors long-range acoustic propagation. The Chukchi Shelf ambient noise shows traditional polar features: it is quieter and wind force influence is reduced when the sea is ice-covered. However, the study reveals two other striking features. First, if the experimental area is covered with ice, the ambient noise drops by up to 10 dB/Hz when the Beaufort Duct disappears. Further, a large part of the noise variability is driven by distant cryogenic events, hundreds of kilometers away from the acoustic receivers. This was quantified using correlations between the CANAPE acoustic data and distant ice-drift magnitude data (National Snow and Ice Data Center).
    Description: This research was supported by the Independent Research and Development Program at WHOI and by the Office of Naval Research (ONR) under Grant Nos. N00014-19-1-2627 and N00014-18-1-2811. J.B. warmly acknowledges D. Cazau (ENSTA Bretagne, France) for helpful discussion and code sharing. The acoustic data collection effort was supported by the ONR under Grant No. N00014-15-1-2196 (Principal Investigator: Y.-T. Lin, WHOI). Thanks also go to crew members of the R/V Sikuliaq and USCGC Healy for assisting in mooring operations. The ITP data were collected and made available by WHOI.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...