ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (2)
  • 1
    Publication Date: 2021-05-19
    Description: Gelatinous zooplankton hold key functions in the ocean and have been shown to significantly influence the transport of organic carbon to the deep sea. We discovered a gelatinous, flux‐feeding polychaete of the genus Poeobius in very high abundances in a mesoscale eddy in the tropical Atlantic Ocean, where it co‐occurred with extremely low particle concentrations. Subsequent analysis of an extensive in situ imaging dataset revealed that Poeobius sp. occurred sporadically between 5°S–20°N and 16°W–46°W in the upper 1000 m. Abundances were significantly elevated and the depth distribution compressed in anticyclonic modewater eddies (ACMEs). In two ACMEs, high Poeobius sp. abundances were associated with strongly reduced particle concentrations and fluxes in the layers directly below the polychaete. We discuss possible reasons for the elevated abundances of Poeobius sp. in ACMEs and provide estimations showing that a single zooplankton species can completely intercept the downward particle flux by feeding with their mucous nets, thereby substantially altering the biogeochemical setting within the eddy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Narcomedusae play a key role as top-down regulators in the midwater, the largest and most understudied biome on Earth. Here, we used ecological niche modeling in three-dimensions (3D), ecomorphology, and phylogeny, to answer evolutionary and ecological questions about the widespread narcomedusan genus Solmissus. Our phylogenetic analyses confirmed that Solmissus incisa represents a complex of several cryptic species. Both the different genetic clades and tentacle morphotypes were widespread and often overlapped geographically- the main difference in their distribution and ecological niche being depth. This demonstrated the importance of including the third dimension when modeling the distribution of pelagic species. Contrary to our hypothesis, we found the modeled distribution of the Solmissus genus (n = 1444) and both tentacle morphotypes to be mostly driven by low dissolved oxygen values and a salinity of 34, and slightly by depth and temperature. Solmissus spp. were reproducing all year round, with specimens reproducing in slightly warmer waters (up to 1.25 & DEG;C warmer). Our results suggest that Solmissus spp. will likely come out as climate change winners by expanding their distribution when facing ocean deoxygenation and by increasing their reproduction due to global warming. However, because most available midwater data comes from the northern Pacific, this sampling bias was undoubtedly reflected in the output of our ecological niche models, which should be assessed carefully. Our study illustrated the value of online databases including imagery and videography records, for studying midwater organisms and treating midwater biogeographic regions as 3D spaces.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...