ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 54 (6). pp. 2283-2297.
    Publication Date: 2017-10-24
    Description: While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU
    In:  Bull., Polar Proj. OP-O3A4, Earthquake Prediction, Washington, D.C., AGU, vol. 4, no. XVI:, pp. 457-472, (ISBN: 3-540-23712-7)
    Publication Date: 1981
    Keywords: Earthquake precursor: prediction research ; Earthquake precursor: deformation or strain ; Geodesy
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-23
    Description: The NCAR Whole Atmosphere Community Climate Model, version 3 (WACCM3), is used to study the atmospheric response from the surface to the lower thermosphere to changes in solar and geomagnetic forcing over the 11-year solar cycle. WACCM3 is a general circulation model that incorporates interactive chemistry that solves for both neutral and ion species. Energy inputs include solar radiation and energetic particles, which vary significantly over the solar cycle. This paper presents a comparison of simulations for solar cycle maximum and solar cycle minimum conditions. Changes in composition and dynamical variables are clearly seen in the middle and upper atmosphere, and these in turn affect terms in the energy budget. Generally good agreement is found between the model response and that derived from satellite observations, although significant differences remain. A small but statistically significant response is predicted in tropospheric winds and temperatures which is consistent with signals observed in reanalysis data sets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU
    In:  Washington, D.C., AGU, vol. 4, no. Publ. No. 12, pp. 9, (3-540-24165-5, XXVI + 228 p.)
    Publication Date: 1981
    Keywords: Handbook of geophysics ; Earthquake precursor: prediction research ; Earthquake precursor: deformation or strain ; Seismicity ; Seismology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU
    In:  Professional Paper, Open-File Rept., Chin. Geophys., Washington, D.C., AGU, vol. 2, no. 1, pp. 157-172, (ISBN 0080419208)
    Publication Date: 1982
    Keywords: Earthquake precursor: prediction research ; China
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-09
    Description: We examined the physiological responses of steady-state iron (Fe)-replete and Fe-limited cultures of the biogeochemically critical marine unicellular diazotrophic cyanobacterium Crocosphaera at glacial (19 Pa; 190 ppm), current (39 Pa; 380 ppm), and projected year 2100 (76 Pa; 750 ppm) CO2 levels. Rates of N2 and CO2 fixation and growth increased in step with increasing partial pressure of CO2 (pCO2), but only under Fe-replete conditions. N2 and carbon fixation rates at 75 Pa CO2 were 1.4-1.8-fold and 1.2-2.0-fold higher, respectively, relative to those at present day and glacial pCO2 levels. In Fe-replete cultures, cellular Fe and molybdenum quotas varied threefold and were linearly related to N2 fixation rates and to external pCO2. However, N2 fixation and trace metal quotas were decoupled from pCO2 in Fe-limited Crocosphaera. Higher CO2 and Fe concentrations both resulted in increased cellular pigment contents and affected photosynthesis vs. irradiance parameters. If these results also apply to natural Crocosphaera populations, anthropogenic CO2 enrichment could substantially increase global oceanic N2 and CO2 fixation, but this effect may be tempered by Fe availability. Possible biogeochemical consequences may include elevated inputs of new nitrogen to the ocean and increased potential for Fe and/or phosphorus limitation in the future high-CO2 ocean, and feedbacks to atmospheric pCO2 in both the near future and over glacial to interglacial timescales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 52 (5). pp. 1809-1823.
    Publication Date: 2017-12-31
    Description: Sea ice brines were collected from a single floe composed of different ice types in the western Weddell Sea in December 2004. The chemical composition of the brines (temperature: 23.4°C to 22.1°C; salinity: 40–63) was examined on seven occasions over 25 days with measurements of dissolved oxygen, dissolved inorganic macronutrients (nitrate plus nitrite, ammonium, phosphorus [DIP], and silicic acid), pH, total alkalinity (AT), dissolved organic carbon (DOC) and nitrogen (DON), total dissolved inorganic carbon (CT), and the stable isotopic composition of CT (δ13CT). The in situ pH ranged from 8.41-8.82 on the seawater scale, dissolved oxygen from 212-604 µmol kg−1, nitrate from 0.1-3.1 µmol kg−1, ammonium 0.1-2.4 µmol kg−1, DIP 0.4- 2.0 µmol kg−1, silicic acid 4-80 µmol kg−1, AT 2,690-4,620 µeq kg−1, DOC 115-359 µmol kg−1, DON 8-26 µmol kg−1, CT 2,090-3,550 µmol kg−1, and δ13CT +2.9‰ - +6.4‰. Compared with the chemical composition of surface oceanic water (salinity of 34), the brines had elevated pH, reduced concentrations of dissolved inorganic macronutrients (including carbon), especially dissolved inorganic nitrogen, and were mostly supersaturated with dissolved oxygen with respect to equilibrium with air, whereas the CT was considerably enriched in 13C. The chemical composition of the brines was consistent with internal biological productivity, but there was a lack of a distinctive and uniform relationship among the major dissolved inorganic nutrients typically used for describing biological activity. This was interpreted as the result of varying stoichiometry of biological activity within a very small spatial scale. Modification by abiotic processes was a potential contributing factor, such as degassing acting on the dissolved oxygen concentration. Carbonate mineral formation, acting on AT and CT, was not evident in brines from first-year ice but was apparent in brine from second-year ice.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-23
    Description: Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models' performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 54 (6). pp. 2493-2505.
    Publication Date: 2014-01-30
    Description: Life history responses are expected to accompany climate warming, yet little is known how long-term effects of climate and environmental change affect the seasonal dynamics of planktonic organisms. We used an historical data set from Lake Washington (U.S.A.) to quantify population responses of a calanoid copepod (Leptodiaptomus ashlandi) to long-term changes in temperature and resource availability and explore potential mechanisms for the responses. Increasing water temperatures (annual mean increase of 1.5 degrees C in the upper 10-m water volume) and longer stratification periods (about 4 weeks) were observed between 1962 and 2005, coincident with a pronounced decline in Leptodiaptomus densities. However, production was maintained because of an increase in the production to biomass ratio and a life cycle shift in Leptodiaptomus from an annual to a 6-month cycle. Cross-wavelet analyses demonstrated that the annual thermal forcing of copepod recruitment observed during the first two decades of the study weakened substantially, leading to more stochastic population dynamics during the past two decades. This shift from one to two generations per year was most likely produced by a longer and warmer growing period combined with changing fluctuations in resource (phytoplankton) availability. Climate change can lead to higher-frequency voltinism in ectothermic organisms and to temporal reorganization of their population dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-24
    Description: The 11-year solar cycles in ozone and temperature are examined using new simulations of coupled chemistry climate models. The results show a secondary maximum in stratospheric tropical ozone, in agreement with satellite observations and in contrast with most previously published simulations. The mean model response varies by up to about 2.5% in ozone and 0.8 K in temperature during a typical solar cycle, at the lower end of the observed ranges of peak responses. Neither the upper atmospheric effects of energetic particles nor the presence of the quasi biennial oscillation is necessary to simulate the lower stratospheric response in the observed low latitude ozone concentration. Comparisons are also made between model simulations and observed total column ozone. As in previous studies, the model simulations agree well with observations. For those models which cover the full temporal range 1960–2005, the ozone solar signal below 50 hPa changes substantially from the first two solar cycles to the last two solar cycles. Further investigation suggests that this difference is due to an aliasing between the sea surface temperatures and the solar cycle during the first part of the period. The relationship between these results and the overall structure in the tropical solar ozone response is discussed. Further understanding of solar processes requires improvement in the observations of the vertically varying and column integrated ozone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...