ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (2)
  • CSIRO
  • 1
    Publication Date: 2019-08-06
    Description: Ocean acidification has direct physiological effects on organisms, for example by dissolving the calcium carbonate structures of calcifying species. However, non-calcifiers may also be affected by changes in seawater chemistry. To disentangle the direct and indirect effects of ocean acidification on zooplankton growth, we undertook a study with two model organisms. Specifically, we investigated the individual effects of short-term exposure to high and low seawater pCO2, and different phytoplankton qualities as a result of different CO2 incubations on the growth of a heterotrophic dinoflagellate (Oxyrrhis marina) and a copepod species (Acartia tonsa). It was observed previously that higher CO2 concentrations can decrease phytoplankton food quality in terms of carbon : nutrient ratios. We therefore expected both seawater pCO2 (pH) and phytoplankton quality to result in decreased zooplankton growth. Although we expected lowest growth rates for all zooplankton under high seawater pCO2 and low algal quality, we found that direct pH effects on consumers seem to be of lesser importance than the associated decrease in algal quality. The decrease in the quality of primary producers under high pCO2 conditions negatively affected zooplankton growth, which may lead to lower availability of food for the next trophic level and thus potentially affect the recruitment of higher trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 52 . pp. 2062-2071.
    Publication Date: 2019-09-23
    Description: We investigated whether nutrient limitations of primary producers act upward through food webs only in terms of density effects or if there is a second pathway for nutrient limitation signals channelled upward to higher trophic levels. We used tritrophic food chains to assess the effects of nutrient-limited phytoplankters (the cryptophyte Rhodomonas salina) on herbivorous zooplankters (the calanoid copepod Acartia tonsa) and finally zooplanktivores (larval herring Clupea harengus) living on the herbivores. The primary producers� food quality had a significant effect on fish condition. Our experimental phosphorus-limited food chain resulted in larval fish with a significantly poorer condition than their counterparts reared under nitrogen-limited or nutrient-sufficient conditions. Our results show that mineral nutrient requirements of consumers have to be satisfied first before fatty acids can promote further growth. This challenges the match/mismatch hypothesis, which links larval fish survival probability solely to prey availability, and could imply that reduced nutrient releases into the environment may affect fish stocks even more severely than previously believed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Phytoplankton stand at the base of the marine food-web, and play a major role in global carbon cycling. Rising CO2 levels and temperatures are expected to enhance growth and alter carbon:nutrient stoichiometry of marine phytoplankton, with possible consequences for the functioning of marine food-webs and the oceanic carbon pump. To date, however, the consistency of phytoplankton stoichiometric responses remains unclear. We therefore performed a meta-analysis on data from experimental studies on stoichiometric responses of marine phytoplankton to elevated pCO2 and 3–5° warming under nutrient replete and limited conditions. Our results demonstrate that elevated pCO2 increased overall phytoplankton C:N (by 4%) and C:P (by 9%) molar ratios under nutrient replete conditions, as well as phytoplankton growth rates (by 6%). Nutrient limitation amplified the CO2 effect on C:N and C:P ratios, with increases to 27% and 17%, respectively. In contrast to elevated pCO2, warming did not consistently alter phytoplankton elemental composition. This could be attributed to species- and study-specific increases and decreases in stoichiometry in response to warming. While our observed moderate CO2-driven changes in stoichiometry are not likely to drive marked changes in food web functioning, they are in the same order of magnitude as current and projected estimations of oceanic carbon export. Therefore, our results may indicate a stoichiometric compensation mechanism for reduced oceanic carbon export due to declining primary production in the near future
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...