ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-23
    Description: Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system. Here the authors demonstrate, through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century the central Arctic Ocean became increasingly saltier with a rate of freshwater loss of 239 ± 270 km3 decade−1. In contrast, long-term (1920–2003) freshwater content (FWC) trends over the Siberian shelf show a general freshening tendency with a rate of 29 ± 50 km3 decade−1. These FWC trends are modulated by strong multidecadal variability with sustained and widespread patterns. Associated with this variability, the FWC record shows two periods in the 1920s–30s and in recent decades when the central Arctic Ocean was saltier, and two periods in the earlier century and in the 1940s–70s when it was fresher. The current analysis of potential causes for the recent central Arctic Ocean salinification suggests that the FWC anomalies generated on Arctic shelves (including anomalies resulting from river discharge inputs) and those caused by net atmospheric precipitation were too small to trigger long-term FWC variations in the central Arctic Ocean; to the contrary, they tend to moderate the observed long-term central-basin FWC changes. Variability of the intermediate Atlantic Water did not have apparent impact on changes of the upper–Arctic Ocean water masses. The authors’ estimates suggest that ice production and sustained draining of freshwater from the Arctic Ocean in response to winds are the key contributors to the salinification of the upper Arctic Ocean over recent decades. Strength of the export of Arctic ice and water controls the supply of Arctic freshwater to subpolar basins while the intensity of the Arctic Ocean FWC anomalies is of less importance. Observational data demonstrate striking coherent long-term variations of the key Arctic climate parameters and strong coupling of long-term changes in the Arctic–North Atlantic climate system. Finally, since the high-latitude freshwater plays a crucial role in establishing and regulating global thermohaline circulation, the long-term variations of the freshwater content discussed here should be considered when assessing climate change and variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-31
    Description: Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system. Here the authors demonstrate, through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century the central Arctic Ocean became increasingly saltier with a rate of freshwater loss of 239 ± 270 km3 decade−1. In contrast, long-term (1920–2003) freshwater content (FWC) trends over the Siberian shelf show a general freshening tendency with a rate of 29 ± 50 km3 decade−1. These FWC trends are modulated by strong multidecadal variability with sustained and widespread patterns. Associated with this variability, the FWC record shows two periods in the 1920s–30s and in recent decades when the central Arctic Ocean was saltier, and two periods in the earlier century and in the 1940s–70s when it was fresher. The current analysis of potential causes for the recent central Arctic Ocean salinification suggests that the FWC anomalies generated on Arctic shelves (including anomalies resulting from river discharge inputs) and those caused by net atmospheric precipitation were too small to trigger long-term FWC variations in the central Arctic Ocean; to the contrary, they tend to moderate the observed long-term central-basin FWC changes. Variability of the intermediate Atlantic Water did not have apparent impact on changes of the upper–Arctic Ocean water masses. The authors’ estimates suggest that ice production and sustained draining of freshwater from the Arctic Ocean in response to winds are the key contributors to the salinification of the upper Arctic Ocean over recent decades. Strength of the export of Arctic ice and water controls the supply of Arctic freshwater to subpolar basins while the intensity of the Arctic Ocean FWC anomalies is of less importance. Observational data demonstrate striking coherent long-term variations of the key Arctic climate parameters and strong coupling of long-term changes in the Arctic–North Atlantic climate system. Finally, since the high-latitude freshwater plays a crucial role in establishing and regulating global thermohaline circulation, the long-term variations of the freshwater content discussed here should be considered when assessing climate change and variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-07
    Description: Oceanic ecosystems altered by interdecadal climate variability may provide a feedback to the physical climate by phytoplankton affecting heat fluxes into the upper ocean and dimethylsulfide fluxes into the atmosphere
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 97 (6). pp. 1069-1072.
    Publication Date: 2019-02-01
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 22 (9). pp. 2276-2301.
    Publication Date: 2019-09-23
    Description: Extratropical cyclones and how they may change in a warmer climate have been investigated in detail with a high-resolution version of the ECHAM5 global climate model. A spectral resolution of T213 (63 km) is used for two 32-yr periods at the end of the twentieth and twenty-first centuries and integrated for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Extremes of pressure, vorticity, wind, and precipitation associated with the cyclones are investigated and compared with a lower-resolution simulation.Comparison with observations of extreme wind speeds indicates that the model reproduces realistic values. This study also investigates the ability of the model to simulate extratropical cyclones by computing composites of intense storms and contrasting them with the same composites from the 40-yr ECMWF Re-Analysis (ERA-40). Composites of the time evolution of intense cyclones are reproduced with great fidelity; in particular the evolution of central surface pressure is almost exactly replicated, but vorticity, maximum wind speed, and precipitation are higher in the model. Spatial composites also show that the distributions of pressure, winds, and precipitation at different stages of the cyclone life cycle compare well with those from ERA-40, as does the vertical structure. For the twenty-first century, changes in the distribution of storms are very similar to those of previous study. There is a small reduction in the number of cyclones but no significant changes in the extremes of wind and vorticity in both hemispheres. There are larger regional changes in agreement with previous studies. The largest changes are in the total precipitation, where a significant increase is seen. Cumulative precipitation along the tracks of the cyclones increases by some 11% per track, or about twice the increase in global precipitation, while the extreme precipitation is close to the globally averaged increase in column water vapor (some 27%). Regionally, changes in extreme precipitation are even higher because of changes in the storm tracks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 79 (10). pp. 2033-2058.
    Publication Date: 2016-09-07
    Description: In the autumn of 1996 the field component of an experiment designed to observe water mass transformation began in the Labrador Sea. Intense observations of ocean convection were taken in the following two winters. The purpose of the experiment was, by a combination of meteorological and oceanographic field observations, laboratory studies, theory, and modeling, to improve understanding of the convective process in the ocean and its representation in models. The dataset that has been gathered far exceeds previous efforts to observe the convective process anywhere in the ocean, both in its scope and range of techniques deployed. Combined with a comprehensive set of meteorological and air-sea flux measurements, it is giving unprecedented insights into the dynamics and thermodynamics of a closely coupled, semienclosed system known to have direct influence on the processes that control global climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 18 . pp. 2842-2859.
    Publication Date: 2017-08-23
    Description: Changes of the North Atlantic thermohaline circulation (THC) excite wave patterns that readjust the thermocline globally. This paper examines the impact of a freshwater-induced THC shutdown on the depth of the Pacific thermocline and its subsequent modification of the El Niño–Southern Oscillation (ENSO) variability using an intermediate-complexity global coupled atmosphere–ocean–sea ice model and an intermediate ENSO model, respectively. It is shown by performing a numerical eigenanalysis and transient simulations that a THC shutdown in the North Atlantic goes along with reduced ENSO variability because of a deepening of the zonal mean tropical Pacific thermocline. A transient simulation also exhibits abrupt changes of ENSO behavior, depending on the rate of THC change. The global oceanic wave adjustment mechanism is shown to play a key role also on multidecadal time scales. Simulated multidecadal global sea surface temperature (SST) patterns show a large degree of similarity with previous climate reconstructions, suggesting that the observed pan-oceanic variability on these time scales is brought about by oceanic waves and by atmospheric teleconnections.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-10
    Description: Comparisons are made between a time series of meteorological surface layer observational data taken on board the R/V Knorr, and model analysis data from the European Centre for Medium-Range Weather Forecasting (ECMWF) and the National Centers for Environmental Prediction (NCEP). The observational data were gathered during a winter cruise of the R/V Knorr, from 6 February to 13 March 1997, as part of the Labrador Sea Deep Convection Experiment. The surface layer observations generally compare well with both model representations of the wintertime atmosphere. The biases that exist are mainly related to discrepancies in the sea surface temperature or the relative humidity of the analyses. The surface layer observations are used to generate bulk estimates of the surface momentum flux, and the surface sensible and latent heat fluxes. These are then compared with the model-generated turbulent surface fluxes. The ECMWF surface sensible and latent heat flux time series compare reasonably well, with overestimates of only 13% and 10%, respectively. In contrast, the NCEP model overestimates the bulk fluxes by 51% and 27%, respectively. The differences between the bulk estimates and those of the two models are due to different surface heat flux algorithms. It is shown that the roughness length formula used in the NCEP reanalysis project is inappropriate for moderate to high wind speeds. Its failings are acute for situations of large air–sea temperature difference and high wind speed, that is, for areas of high sensible heat fluxes such as the Labrador Sea, the Norwegian Sea, the Gulf Stream, and the Kuroshio. The new operational NCEP bulk algorithm is found to be more appropriate for such areas. It is concluded that surface turbulent flux fields from the ECMWF are within the bounds of observational uncertainty and therefore suitable for driving ocean models. This is in contrast to the surface flux fields from the NCEP reanalysis project, where the application of a more suitable algorithm to the model surface-layer meteorological data is recommended
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 69 . pp. 1824-1840.
    Publication Date: 2018-04-16
    Description: Sudden stratospheric warmings are prominent examples of dynamical wave–mean flow interactions in the Arctic stratosphere during Northern Hemisphere winter. They are characterized by a strong temperature increase on time scales of a few days and a strongly disturbed stratospheric vortex. This work investigates a wide class of supervised learning methods with respect to their ability to classify stratospheric warmings, using temperature anomalies from the Arctic stratosphere and atmospheric forcings such as ENSO, the quasi-biennial oscillation (QBO), and the solar cycle. It is demonstrated that one representative of the supervised learning methods family, namely nonlinear neural networks, is able to reliably classify stratospheric warmings. Within this framework, one can estimate temporal onset, duration, and intensity of stratospheric warming events independently of a particular pressure level. In contrast to classification methods based on the zonal-mean zonal wind, the approach herein distinguishes major, minor, and final warmings. Instead of a binary measure, it provides continuous conditional probabilities for each warming event representing the amount of deviation from an undisturbed polar vortex. Additionally, the statistical importance of the atmospheric factors is estimated. It is shown how marginalized probability distributions can give insights into the interrelationships between external factors. This approach is applied to 40-yr and interim ECMWF (ERA-40/ERA-Interim) and NCEP–NCAR reanalysis data for the period from 1958 through 2010.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-23
    Description: Three interrelated climate phenomena are at the center of the Climate Variability and Predictability (CLIVAR) Atlantic research: tropical Atlantic variability (TAV), the North Atlantic Oscillation (NAO), and the Atlantic meridional overturning circulation (MOC). These phenomena produce a myriad of impacts on society and the environment on seasonal, interannual, and longer time scales through variability manifest as coherent fluctuations in ocean and land temperature, rainfall, and extreme events. Improved understanding of this variability is essential for assessing the likely range of future climate fluctuations and the extent to which they may be predictable, as well as understanding the potential impact of human-induced climate change. CLIVAR is addressing these issues through prioritized and integrated plans for short-term and sustained observations, basin-scale reanalysis, and modeling and theoretical investigations of the coupled Atlantic climate system and its links to remote regions. In this paper, a brief review of the state of understanding of Atlantic climate variability and achievements to date is provided. Considerable discussion is given to future challenges related to building and sustaining observing systems, developing synthesis strategies to support understanding and attribution of observed change, understanding sources of predictability, and developing prediction systems in order to meet the scientific objectives of the CLIVAR Atlantic program.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...