ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (29)
  • AMS (American Meteorological Society)  (28)
  • American Geophysical Union, AGU
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (21). 11,166-11,173.
    Publication Date: 2020-06-29
    Description: The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing ENSO phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SST) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 9321-9337.
    Publication Date: 2020-08-04
    Description: In the present study, the influence of some major tropical modes of variability on northern hemisphere regional blocking frequency variability during boreal winter is investigated. Reanalysis data and an ensemble experiment with the ECMWF model using relaxation towards the ERA-Interim reanalysis data inside the tropics are used. The tropical modes under investigation are El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO) and the upper tropospheric equatorial zonal-mean zonal wind . An early (late) MJO phase refers to the part of the MJO cycle when enhanced (suppressed) precipitation occurs over the western Indian Ocean and suppressed (enhanced) precipitation occurs over the Maritime Continent and the western tropical Pacific. Over the North Pacific sector, it is found that enhanced (suppressed) high latitude blocking occurs in association with El Niño (La Niña) events, late (early) MJO phases and westerly (easterly) . Over central to southern Europe and the east Atlantic, it is found that late MJO phases, as well as a suppressed MJO are leading to enhanced blocking frequency. Furthermore, early (late) MJO phases are followed by blocking anomalies over the western North Atlantic region, similar to those associated with a positive (negative) North Atlantic Oscillation. Over northern Europe, the easterly (westerly) phase of is associated with enhanced (suppressed) blocking. These results are largely confirmed by both the reanalysis and the model experiment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 48 (4). pp. 757-771.
    Publication Date: 2021-02-08
    Description: The Eddy Kinetic Energy (EKE) associated with the Subtropical Countercurrent (STCC) in the western subtropical South Pacific is known to exhibit substantial seasonal and decadal variability. Using an eddy-permitting ocean general circulation model, which is able to reproduce the observed, salient features of the seasonal cycles of shear, stratification, baroclinic production and the associated EKE, we investigate the decadal changes of EKE. We show that the STCC region exhibits, uniquely among the subtropical gyres of the world’s oceans, significant, atmospherically forced, decadal EKE variability. The decadal variations are driven by changing vertical shear between the STCC in the upper 300 m and the South Equatorial Current below, predominantly caused by variations in STCC strength associated with a changing meridional density gradient. In the 1970s, an increased meridional density gradient results in EKE twice as large as in later decades in the model. Utilizing sensitivity experiments, decadal variations in the wind field are shown to be the essential driver. Local wind stress curl anomalies associated with the Interdecadal Pacific Oscillation (IPO) lead to up- and downwelling of the thermocline, inducing strengthening or weakening of the STCC and the associated EKE. Additionally, remote wind stress curl anomalies in the eastern subtropical South Pacific, which are not related to the IPO, generate density anomalies that propagate westward as Rossby waves and can account for up to 30–40 % of the density anomalies in the investigated region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 123 (3). pp. 2037-2048.
    Publication Date: 2021-03-19
    Description: Monthly mean sea level anomalies in the tropical Pacific for the period 1961-2002 are reconstructed using a linear, multi-mode model driven by monthly mean wind stress anomalies from the NCEP/NCAR and ERA-40 reanalysis products. Overall, the sea level anomalies reconstructed by both wind stress products agree well with the available tide gauge data, although with poor performance at Kanton Island in the western-central equatorial Pacific and reduced amplitude at Christmas Island. The reduced performance is related to model error in locating the pivot point in sea level variability associated with the so-called “tilt” mode. We present evidence that the pivot point was further west during the period 1993-2014 than during the period 1961-2002 and attribute this to a persistent upward trend in the zonal wind stress variance along the equator west of 160° W throughout the period 1961-2014. Experiments driven by the zonal component of the wind stress alone reproduce much of the trend in sea level found in the experiments driven by both components of the wind stress. The experiments show an upward trend in sea level in the eastern tropical Pacific over the period 1961-2002, but with a much stronger upward trend when using the NCEP/NCAR product. We argue that the latter is related to an overly strong eastward trend in zonal wind stress in the eastern-central Pacific that is believed to be a spurious feature of the NCEP/NCAR product.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (1). pp. 602-616.
    Publication Date: 2020-02-06
    Description: A multi-mode, linear reduced-gravity model, driven by ERA-Interim monthly mean wind stress anomalies, is used to investigate interannual variability in tropical Pacific sea level as seen in satellite altimeter data. The model output is fitted to the altimeter data along the equator, in order to derive the vertical profile for the model forcing, showing that a signature from modes higher than mode six cannot be extracted from the altimeter data. It is shown that the model has considerable skill at capturing interannual sea level variability both on and off the equator. The correlation between modelled and satellite-derived sea level data exceeds 0.8 over a wide range of longitudes along the equator and readily captures the observed ENSO events. Overall, the combination of the first, second, third and fifth modes can provide a robust estimate of the interannual sea level variability, the second mode being dominant. A remarkable feature of both the model and the altimeter data is the presence of a pivot point in the western Pacific on the equator. We show that the westward displacement of the pivot point from the centre of the basin is strongly influenced by the fact that most of the wind stress variance is found in the western part of the basin. We also show that the Sverdrup transport is not fundamental to the dynamics of the recharge/discharge mechanism in our model, although the spatial structure of the wind forcing does play a role in setting the amplitude of the “warm water volume”.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: We investigate the daily variability of the East Asian summer monsoon (EASM) by projecting daily wind anomaly data onto the two major modes of an interannual multivariate Empirical Orthogonal Functions analysis. Mode 1, closely resembling the Pacific-Japan (PJ) pattern and referred to as PJ-mode, transits from positive to negative phase around mid-summer consistent with the Meiyu rains predominantly being an early summer phenomenon. Mode 2, which is influenced by the Indian summer monsoon (ISM) and referred to as ISM-mode, peaks in late July and early August and is associated with rainfall farther north over China. We then analyze the relation between the intraseasonal variation of the EASM and the Madden-Julian Oscillation (MJO) by analyzing circulation anomalies following MJO events. In the lower troposphere, the circulation anomalies associated with the MJO most strongly project on the PJ-mode. MJO phases 1-4 (5-8) favor the positive (negative) phase of the PJ-mode by favoring the anticyclonic (cyclonic) anomalies over the subtropical western North Pacific. In the upper troposphere, the circulation anomalies associated with the MJO project mainly on the ISM-mode.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-18
    Description: Recent evidence from mooring data in the equatorial Atlantic reveals that semi-annual and longer time scale ocean current variability is close to being resonant with equatorial basin modes. Here we show that intraseasonal variability, with time scales of 10's of days, provides the energy to maintain these resonant basin modes against dissipation. The mechanism is analogous to that by which storm systems in the atmosphere act to maintain the atmospheric jet stream. We demonstrate the mechanism using an idealised model set-up that exhibits equatorial deep jets. The results are supported by direct analysis of available mooring data from the equatorial Atlantic Ocean covering a depth range of several thousand meters. The analysis of the mooring data suggests that the same mechanism also helps maintain the seasonal variability.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 42 (5). pp. 824-839.
    Publication Date: 2018-04-12
    Description: The mechanisms involved in setting the annual cycle of the Florida Current transport are revisited using an adjoint model approach. Adjoint sensitivities of the Florida Current transport to wind stress reproduce a realistic seasonal cycle with an amplitude of ~1.2 Sv (1 Sv ≡ 106 m3 s−1). The annual cycle is predominantly determined by wind stress forcing and related coastal upwelling (downwelling) north of the Florida Strait along the shelf off the North American coast. Fast barotropic waves propagate these anomalies southward and reach the Florida Strait within a month, causing an amplitude of ~1 Sv. Long baroclinic planetary Rossby waves originating from the interior are responsible for an amplitude of ~0.8 Sv but have a different phase. The sensitivities corresponding to the first baroclinic mode propagate westward and are highly influenced by topography. Considerable sensitivities are only found west of the Mid-Atlantic Ridge, with maximum values at the western shelf edge. The second baroclinic mode also has an impact on the Florida Current variability, but only when a mean flow is present. A second-mode wave train propagates southwestward from the ocean bottom on the western side of the Mid-Atlantic Ridge between ~36° and 46°N and at Flemish Cap, where the mean flow interacts with topography, to the surface. Other processes such as baroclinic waves along the shelf and local forcing within the Florida Strait are of minor importance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 42 . pp. 725-747.
    Publication Date: 2018-04-12
    Description: The residual effect of surface gravity waves on mean flows in the upper ocean is investigated using thickness weighted mean (TWM) theory applied in a vertically Lagrangian and horizontally Eulerian coordinate system. Depth-dependent equations for the conservation of volume, momentum, and energy are derived. These equations allow for (i) finite amplitude fluid motions, (ii) the horizontal divergence of currents and (iii) a concise treatment of both the kinematic and viscous boundary conditions at the sea surface. Under the assumptions of steady and monochromatic waves and a uniform turbulent viscosity, the TWM momentum equations are used to illustrate the pressure- and viscosity-induced momentum fluxes through the surface that are implicit in previous studies of the wave-induced modification of the classical Ekman spiral problem. The TWM approach clarifies, in particular, the surface momentum flux associated with the so-called virtual wave stress of Longuet-Higgins. Overall the TWM framework can be regarded as an alternative to the three-dimensional Lagrangian mean framework of Pierson. Moreover the TWM framework can be used to include the residual effect of surface waves in large-scale circulation models. In specific models that carry the TWM velocity appropriate for advecting tracers as their velocity variable, the turbulent viscosity term should be modified so that the viscosity acts only on the Eulerian mean velocity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 118 . pp. 2761-2773.
    Publication Date: 2018-02-27
    Description: A realistic primitive-equation model of the Southern Ocean at eddying spatial resolution is used to examine the effect of ocean-surface-velocity dependence of the wind stress on the strength of near-inertial oscillations. Accounting for the ocean-surface-velocity dependence of the wind stress leads to a large reduction of wind-induced near-inertial energy of approximately 40 percent and of wind power input into the near-inertial frequency band of approximately 20 percent. A large part of this reduction can be explained by the leading-order modification to the wind stress if the ocean-surface velocity is included. The strength of the reduction is shown to be modulated by the inverse of the ocean-surface-mixed-layer depth. We conclude that the effect of surface-velocity dependence of the wind stress should be taken into account when estimating the wind-power input into the near-inertial frequency band and when estimating near-inertial energy levels in the ocean due to wind forcing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...