ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-09
    Description: The latest Permian extinction (LPE), ca. 252 Ma, represents the most severe extinction event in Earth’s history. The cause is still debated, but widespread marine anoxic to euxinic (H 2 S rich) conditions, from deep to shallow water environments, are commonly suggested. As a proxy for marine oxygen levels, we analyzed 98/95 Mo of two LPE sections that represent a gradient in water depth on the northwest margin of Pangea. Results from deep-water slope environments show a large shift in 98/95 Mo values from –2.02 to +2.23 at the extinction horizon, consistent with onset of euxinic conditions. In contrast, sub-storm wave base shelf environments show little change in the molybdenum isotopic composition (–1.34 to +0.05), indicating ongoing oxic conditions across the LPE. These results indicate that areas of the continental shelf of northwest Pangea underwent mass extinction under oxic conditions throughout the LPE event, and that shallow-water anoxia was therefore not a global phenomenon.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-07
    Description: The interaction of clouds with solar and terrestrial radiation is one of the most important topics of climate research. In recent years it has been recognized that only a full three-dimensional (3D) treatment of this interaction can provide answers to many climate and remote sensing problems, leading to the worldwide development of numerous 3D radiative transfer (RT) codes. The international Intercomparison of 3D Radiation Codes (I3RC), described in this paper, sprung from the natural need to compare the performance of these 3D RT codes used in a variety of current scientific work in the atmospheric sciences. I3RC supports intercomparison and development of both exact and approximate 3D methods in its effort to 1) understand and document the errors/limits of 3D algorithms and their sources; 2) provide “baseline” cases for future code development for 3D radiation; 3) promote sharing and production of 3D radiative tools; 4) derive guidelines for 3D radiative tool selection; and 5) improve atmospheric science education in 3D RT. Results from the two completed phases of I3RC have been presented in two workshops and are expected to guide improvements in both remote sensing and radiative energy budget calculations in cloudy atmospheres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...