ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 36 (1). pp. 64-86.
    Publikationsdatum: 2018-04-11
    Beschreibung: Chlorofluorocarbon (component CFC-11) and hydrographic data from 1997, 1999, and 2001 are presented to track the large-scale spreading of the Upper Labrador Sea Water (ULSW) in the subpolar gyre of the North Atlantic Ocean. ULSW is CFC rich and comparatively low in salinity. It is located on top of the denser “classical” Labrador Sea Water (LSW), defined in the density range σΘ = 27.68–27.74 kg m−3. It follows spreading pathways similar to LSW and has entered the eastern North Atlantic. Despite data gaps, the CFC-11 inventories of ULSW in the subpolar North Atlantic (40°–65°N) could be estimated within 11%. The inventory increased from 6.0 ± 0.6 million moles in 1997 to 8.1 ± 0.6 million moles in 1999 and to 9.5 ± 0.6 million moles in 2001. CFC-11 inventory estimates were used to determine ULSW formation rates for different periods. For 1970–97, the mean formation rate resulted in 3.2–3.3 Sv (Sv ≡ 106 m3 s−1). To obtain this estimate, 5.0 million moles of CFC-11 located in 1997 in the ULSW in the subtropical/tropical Atlantic were added to the inventory of the subpolar North Atlantic. An estimate of the mean combined ULSW/LSW formation rate for the same period gave 7.6–8.9 Sv. For the years 1998–99, the ULSW formation rate solely based on the subpolar North Atlantic CFC-11 inventories yielded 6.9–9.2 Sv. At this time, the lack of classical LSW formation was almost compensated for by the strongly pronounced ULSW formation. Indications are presented that the convection area needed in 1998–99 to form this amount of ULSW exceeded the available area in the Labrador Sea. The Irminger Sea might be considered as an additional region favoring ULSW formation. In 2000–01, ULSW formation weakened to 3.3–4.7 Sv. Time series of layer thickness based on historical data indicate that there exists considerable variability of ULSW and classical LSW formation on decadal scales.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 35 . pp. 2031-2053.
    Publikationsdatum: 2020-08-04
    Beschreibung: Repeated shipboard observation sections across the boundary flow off northeastern Brazil as well as acoustic Doppler current profiler (ADCP) and current-meter records from a moored boundary array deployed during 2000–04 near 11°S are analyzed here for both the northward warm water flow by the North Brazil Undercurrent (NBUC) above approximately 1100 m and the southward flow of North Atlantic Deep Water (NADW) underneath. At 5°S, the mean from nine sections yields an NBUC transport of 26.5 ± 3.7 Sv (Sv ≡ 106 m3 s−1) along the boundary; at 11°S the mean NBUC transport from five sections is 25.4 ± 7.4 Sv, confirming that the NBUC is already well developed at 11°S. At both latitudes a persistent offshore southward recirculation between 200- and 1100-m depth reduces the net northward warm water flow through the 5°S section (west of 31.5°W) to 22.1 ± 5.3 Sv and through the 11°S section to 21.7 ± 4.1 Sv (west of 32.0°W). The 4-yr-long NBUC transport time series from 11°S yields a seasonal cycle of 2.5 Sv amplitude with its northward maximum in July. Interannual NBUC transport variations are small, varying only by ±1.2 Sv during the four years, with no detectable trend. The southward flow of NADW within the deep western boundary current at 5°S is 25.5 ± 8.3 Sv with an offshore northward recirculation, yielding a nine-section mean of 20.3 ± 10.1 Sv west of 31.5°W. For Antarctic Bottom Water, a net northward flow of 4.4 ± 3.0 Sv is determined at 5°S. For the 11°S section, the moored array data show a pronounced energy maximum at 60–70-day period in the NADW depth range, which was identified in related work as deep eddies translating southward along the boundary. Based on a kinematic eddy model fit to the first half of the moored time series, the mean NADW transfer by the deep eddies at 11°S was estimated to be about 17 Sv. Given the large interannual variability of the deep near-boundary transport time series, which ranged from 14 to 24 Sv, the 11°S mean was considered to be not distinguishable from the mean at 5°S
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...