ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Vereinigung für Angewandte und Allgemeine Mikrobiologie
    In:  EPIC3VAAM Jahrestagung, Dresden, 2014-10-05-2014-10-08Dresden, Vereinigung für Angewandte und Allgemeine Mikrobiologie
    Publication Date: 2014-10-13
    Description: Rivers represent a transition zone between terrestrial and aquatic environments, as well as a transition zone between methane rich and methane poor environments. Methane concentrations are generally higher in freshwater systems than in marine systems. The Elbe River is one of the crucial drainages into the North Sea and by this high amounts of methane are imported into the marine water column. Oxidation of methane by aerobic methanotrophic bacteria is the major biological sink. Six cruises from November 2013 until June 2014 were conducted along the salinity gradient from Hamburg towards Helgoland. Methane oxidation rate was measured with radiotracers and the abundance of methanotrophic bacteria was assessed via real-time PCR. A newly designed primer targeting the genomic sequence encoding the α-subunit of the functional pMMO enzyme in water column organisms was amplified and tested against the conventional primer set. At the marine stations the cell number was relatively stable with 3 x 104 cells per L, while in the Elbe cell numbers ranged between 103 – 106 cells per L. Environmental parameters (temperature, salinity, SPM) seemed to have no influence on the abundance. However the interaction between activity and abundance seemed to be more complex.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMER SOC LIMNOLOGY OCEANOGRAPHY
    In:  EPIC3Limnology and Oceanography-Methods, AMER SOC LIMNOLOGY OCEANOGRAPHY, 13(6), pp. 312-327, ISSN: 1541-5856
    Publication Date: 2015-07-08
    Description: Microbial methane oxidation rates in ocean and freshwater systems reveal how much of emitted methane from the sediments is oxidized to CO2 and how much can reach the atmosphere directly. The tracer-method using 3H-CH4 provides a way to measure MOX-rates even in water with low methane concentrations without needing any specific instrumentation. We assessed this method by implementing several experiments, collecting data from various environments, and including recent literature concerning the method to identify any uncertainties that should be considered. Our assessment reveals some difficulties of the method but also reassures previous assumptions to be correct. Some of the difficulties are hardly to be avoided, such as incubating all samples at the right in-situ temperature or limiting the variability of MOX-rate measurements in water of low methanotrophic activity. Other details, e.g. quickly measuring the total radioactivity after stopping the incubation, are easy to adapt in each laboratory. And yet other details as shaking during incubation and bottle size seem to be irrelevant. With our study we hope to improve and to encourage future measurements of MOX-rates in different environments and to provide a standard procedure of MOX measurements to make data of MOX better comparable.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMER SOC LIMNOLOGY OCEANOGRAPHY
    In:  EPIC3Limnology and Oceanography, AMER SOC LIMNOLOGY OCEANOGRAPHY, ISSN: 0024-3590
    Publication Date: 2020-09-07
    Description: We investigated the impact of kelp deposition on the geochemistry and microbial community composition of beach sands on the island of Helgoland (North Sea). The composition of the microbial community at a beach with regular kelp deposition appeared shaped by this regular input of organic material, as indicated by significantly higher proportions of aerobic degraders, fermenters, and sulfur cycling microorganisms. Rapid degradation of deposited kelp by this community leads to high levels of dissolved organic and inorganic carbon and nutrients, a lower pH and anoxia. Aerobic respiration, fermentation, Fe- and SO42- reduction and methanogenesis were strongly enhanced, with SO42- reduction being the main process in kelp degradation. SO42- reduction rates increased 20 to 25-fold upon addition of kelp. The main route of electrons from kelp to SO42- was not via CO and H2, as expected, but via organic fermentation products. O2 supply by the tides was not sufficient and reduced intermediates escaped from the sediment with tidal water retraction. The resulting extremely high levels of free sulfide (〉10 mmol L-1) lead to abundant filamentous growth of sulfur-oxidizing bacteria largely composed of a rare O2-adapted Sulfurovum lacking the expected denitrification genes. Our results show that regular kelp deposition strongly enhances the thermodynamic disequilibrium in the beach sand habitat, leading to a dramatic enhancement of the sulfur cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...