ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Leg dominance has been reported as one potential risk factor for lower-limb injuries in recreational downhill skiers. The current study proposed and tested two possible mechanisms for a leg dominance effect on skiing injuries—imbalance of the knee muscle strength and bilateral asymmetry in sensorimotor control. We hypothesized that the knee muscle strength (Hypothesis 1; H1) or postural control (Hypothesis 2; H2) would be affected by leg dominance. Fifteen well-experienced recreational downhill skiers (aged 24.3 ± 3.2 years) participated in this study. Isometric knee flexor/extensor muscle strength was tested using a dynamometer. Postural control was explored by using a kinematic principal component analysis (PCA) to determine the coordination structure and control of three-dimensional unipedal balancing movements while wearing ski equipment on firm and soft standing surfaces. Only H2 was supported when balancing on the firm surface, revealing that when shifting body weight over the nondominant leg, skiers significantly changed the coordination structure (p 〈 0.006) and the control (p 〈 0.004) of the lifted-leg movements. Based on the current findings, bilateral asymmetry in sensorimotor control rather than asymmetry in strength seems a more likely mechanism for the previously reported effect of leg dominance on lower-limb injury risk in recreational downhill skiers.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Sample entropy (SaEn) applied on center-of-pressure (COP) data provides a measure for the regularity of human postural control. Two mechanisms could contribute to altered COP regularity: first, an altered temporal structure (temporal regularity) of postural movements (H1); or second, altered coordination between segment movements (coordinative complexity; H2). The current study used rapid, voluntary head-shaking to perturb the postural control system, thus producing changes in COP regularity, to then assess the two hypotheses. Sixteen healthy participants (age 26.5 ± 3.5; seven females), whose postural movements were tracked via 39 reflective markers, performed trials in which they first stood quietly on a force plate for 30 s, then shook their head for 10 s, finally stood quietly for another 90 s. A principal component analysis (PCA) performed on the kinematic data extracted the main postural movement components. Temporal regularity was determined by calculating SaEn on the time series of these movement components. Coordinative complexity was determined by assessing the relative explained variance of the first five components. H1 was supported, but H2 was not. These results suggest that moderate perturbations of the postural control system produce altered temporal structures of the main postural movement components, but do not necessarily change the coordinative structure of intersegment movements.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: The effect of salinity and water stresses on the essential oil components of Rosmarinus officinalis essential oil was investigated. Rosemary plants were submitted to different water treatments: tap water (TW), salt water (SW) and without irrigation (NIR). GC/MS analysis showed that ten and eleven volatile compounds were identified in essential oil of rosemary plants irrigated with tap water (TW) and salt water (SW), respectively. However, thirteen volatile compounds were identified in essential oil of non-irrigated plants (NIR). Moreover, among these compounds, α-Pinene, Eucalyptol (1,8 Cineol), Camphene, Borneol, D-verbenone, Bornyl acetate were the major components of oil. Also, GC/MS results highlighted that non-irrigated rosemary plants showed the highest essential oil yield (Y). Obtained oil yields followed the order YNIR 〉 YTW 〉 YSW. In conclusion, qualitative and quantitative differences in rosemary essential oil components were highlighted in relation to water stress.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Postural control research suggests a non-linear, n-shaped relationship between dual-tasking and postural stability. Nevertheless, the extent of this relationship remains unclear. Since kinematic principal component analysis has offered novel approaches to study the control of movement components (PM) and n-shapes have been found in measures of sway irregularity, we hypothesized (H1) that the irregularity of PMs and their respective control, and the control tightness will display the n-shape. Furthermore, according to the minimal intervention principle (H2) different PMs should be affected differently. Finally, (H3) we expected stronger dual-tasking effects in the older population, due to limited cognitive resources. We measured the kinematics of forty-one healthy volunteers (23 aged 26 ± 3; 18 aged 59 ± 4) performing 80 s tandem stances in five conditions (single-task and auditory n-back task; n = 1–4), and computed sample entropies on PM time-series and two novel measures of control tightness. In the PM most critical for stability, the control tightness decreased steadily, and in contrast to H3, decreased further for the younger group. Nevertheless, we found n-shapes in most variables with differing magnitudes, supporting H1 and H2. These results suggest that the control tightness might deteriorate steadily with increased cognitive load in critical movements despite the otherwise eminent n-shaped relationship.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AMER GEOPHYSICAL UNION
    In:  EPIC3Journal of Geophysical Research-Oceans, AMER GEOPHYSICAL UNION, 118, ISSN: 0148-0227
    Publication Date: 2017-01-20
    Description: This study deals with observations and simulations of the evolution of coastal polynias focusing on the Ronne Polynia. We compare differences in polynia extent and ice drift patterns derived from satellite radar images and from simulations with the Finite Element Sea Ice Ocean Model, employing three atmospheric forcing data sets that differ in spatial and temporal resolution. Two polynia events are analyzed, one from austral summer and one from late fall 2008. The open water area in the polynia is of similar size in the satellite images and in the model simulations, but its temporal evolution differs depending on katabatic winds being resolved in the atmospheric forcing data sets. Modeled ice drift is slower than the observed and reveals greater turning angles relative to the wind direction in many cases. For the summer event, model results obtained with high-resolution forcing are closer to the drift field derived from radar imagery than those from coarse resolution forcing. For the late fall event, none of the forcing data yields outstanding results. Our study demonstrates that a dense (1–3 km) model grid and atmospheric forcing provided at high spatial resolution ( 〈 50 km) are critical to correctly simulate coastal polynias with a coupled sea-ice ocean model.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-04
    Description: Multimodel Arctic Ocean “climate response function” experiments are analyzed in order to explore the effects of anomalous wind forcing over the Greenland Sea (GS) on poleward ocean heat transport, Atlantic Water (AW) pathways, and the extent of Arctic sea ice. Particular emphasis is placed on the sensitivity of the AW circulation to anomalously strong or weak GS winds in relation to natural variability, the latter manifested as part of the North Atlantic Oscillation. We find that anomalously strong (weak) GS wind forcing, comparable in strength to a strong positive (negative) North Atlantic Oscillation index, results in an intensification (weakening) of the poleward AW flow, extending from south of the North Atlantic Subpolar Gyre, through the Nordic Seas, and all the way into the Canadian Basin. Reconstructions made utilizing the calculated climate response functions explain ∼50% of the simulated AW flow variance; this is the proportion of variability that can be explained by GS wind forcing. In the Barents and Kara Seas, there is a clear relationship between the wind‐driven anomalous AW inflow and the sea ice extent. Most of the anomalous AW heat is lost to the atmosphere, and loss of sea ice in the Barents Sea results in even more heat loss to the atmosphere, and thus effective ocean cooling. Release of passive tracers in a subset of the suite of models reveals differences in circulation patterns and shows that the flow of AW in the Arctic Ocean is highly dependent on the wind stress in the Nordic Seas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...