ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-05
    Description: The Alfred Wegener Institute Climate Model (AWI‐CM) participates for the first time in the Coupled Model Intercomparison Project (CMIP), CMIP6. The sea ice‐ocean component, FESOM, runs on an unstructured mesh with horizontal resolutions ranging from 8 to 80 km. FESOM is coupled to the Max Planck Institute atmospheric model ECHAM 6.3 at a horizontal resolution of about 100 km. Using objective performance indices, it is shown that AWI‐CM performs better than the average of CMIP5 models. AWI‐CM shows an equilibrium climate sensitivity of 3.2°C, which is similar to the CMIP5 average, and a transient climate response of 2.1°C which is slightly higher than the CMIP5 average. The negative trend of Arctic sea‐ice extent in September over the past 30 years is 20–30% weaker in our simulations compared to observations. With the strongest emission scenario, the AMOC decreases by 25% until the end of the century which is less than the CMIP5 average of 40%. Patterns and even magnitude of simulated temperature and precipitation changes at the end of this century compared to present‐day climate under the strong emission scenario SSP585 are similar to the multi‐model CMIP5 mean. The simulations show a 11°C warming north of the Barents Sea and around 2°C to 3°C over most parts of the ocean as well as a wetting of the Arctic, subpolar, tropical, and Southern Ocean. Furthermore, in the northern middle latitudes in boreal summer and autumn as well as in the southern middle latitudes, a more zonal atmospheric flow is projected throughout the year.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    CLIVAR
    In:  EPIC3CLIVAR Open Science Conference: Charting the course for climate and ocean research, Qingdao, China, 2016-09-18-2016-09-25Qingdao, China, CLIVAR
    Publication Date: 2017-01-25
    Description: Ocean model biases such as the North West corner cold bias connected to the location of the Gulf Stream path, the warm bias in upwelling zones, the warm bias in the Southern Ocean, and model drift like the deep ocean warm bias which tends to peak in around 800 to 1000 m depth in the Atlantic Ocean are issues common among state-of-the-art ocean models. These issues are often amplified when the ocean model is coupled to an atmosphere model to perform climate simulations. Furthermore, unrealistic freezing of the Labrador Sea is an issue in various climate models. With the unstructured mesh approach in our Finite Element Sea ice Ocean Model (FESOM) we are able to systematically investigate the benefits of local refinement of the ocean model grid both in an uncoupled set-up (sea-ice ocean only) as well as in a fully coupled climate model (atmosphere- land-sea ice-ocean). While the horizontal ocean model resolution is 25 km on average in the finer grids, we refine the grids in some key areas to up to 5 km. Therefore we can explicitly resolve ocean eddies and simulate eddy-mean flow interactions in these key areas. The atmosphere-land component of our AWI-CM (Alfred Wegener Institute Climate Model) is ECHAM6-JSBACH developed at the Max-Planck-Institute for Meteorology in Hamburg, Germany. Here we present results of century-long uncoupled and coupled simulations on ocean model grids with different local refinements while keeping the atmosphere resolution constant in the coupled simulations. Results indicate that high horizontal resolutions in key regions such as the Gulf Stream / North Atlantic Current area or the Agulhas Stream can reduce biases such as the North West corner cold bias and the deep ocean model drift.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMER GEOPHYSICAL UNION
    In:  EPIC3Journal of Geophysical Research-Oceans, AMER GEOPHYSICAL UNION, 116(C12038), pp. 1-18, ISSN: 0148-0227
    Publication Date: 2019-07-17
    Description: The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea-ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea-Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6-hourly NCEP reanalyses 1 (1.875° × 1.875°), 6-hourly NCEP reanalyses 2 (1.875° × 1.875°), 6-hourly analyses from the GME (Global Model of the German Weather Service) (0.5° × 0.5°) and high-resolution hourly COSMO (Consortium for Small-Scale Modeling) data (5 km × 5 km). In all FESOM simulations, except for those with 6-hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast-ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea-ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-04
    Description: Multimodel Arctic Ocean “climate response function” experiments are analyzed in order to explore the effects of anomalous wind forcing over the Greenland Sea (GS) on poleward ocean heat transport, Atlantic Water (AW) pathways, and the extent of Arctic sea ice. Particular emphasis is placed on the sensitivity of the AW circulation to anomalously strong or weak GS winds in relation to natural variability, the latter manifested as part of the North Atlantic Oscillation. We find that anomalously strong (weak) GS wind forcing, comparable in strength to a strong positive (negative) North Atlantic Oscillation index, results in an intensification (weakening) of the poleward AW flow, extending from south of the North Atlantic Subpolar Gyre, through the Nordic Seas, and all the way into the Canadian Basin. Reconstructions made utilizing the calculated climate response functions explain ∼50% of the simulated AW flow variance; this is the proportion of variability that can be explained by GS wind forcing. In the Barents and Kara Seas, there is a clear relationship between the wind‐driven anomalous AW inflow and the sea ice extent. Most of the anomalous AW heat is lost to the atmosphere, and loss of sea ice in the Barents Sea results in even more heat loss to the atmosphere, and thus effective ocean cooling. Release of passive tracers in a subset of the suite of models reveals differences in circulation patterns and shows that the flow of AW in the Arctic Ocean is highly dependent on the wind stress in the Nordic Seas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-11-01
    Description: Observations in polar regions show that sea ice deformations are often narrow linear features. These long bands of deformations are referred to as Linear Kinematic Features (LKFs). Viscous- plastic sea ice models have the capability to simulate LKFs and more generally sea ice deformations. Moreover, viscous-plastic models simulate a larger number and more refined LKFs as the spatial resolution is increased. Besides grid spacing, other aspects of a numerical implementation, such as the placement of velocities and the associated degrees of freedom, may impact the formation of simulated LKFs. To explore these effects this study compares numerical solutions of sea ice models with different velocity staggering in a benchmark problem. Discretizations based on A-,B-, and C-grid systems on quadrilateral meshes have similar resolution properties as an approximation with an A-grid staggering on triangular grids (with the same total number of vertices). CD-grid approximations with a given grid spacing have properties, specifically the number and length of simulated LKFs, that are qualitatively similar to approximations on conventional Arakawa A-grid, B-grid, and C-grid approaches with half the grid spacing or less, making the CD-discretization more efficient with respect to grid resolution. One reason for this behavior is the fact that the CD-grid approach has a higher number of degrees of freedom to discretize the velocity field. The higher effective resolution of the CD-discretization makes it an attractive alternative to conventional discretizations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...