ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-05-10
    Description: GLAMAP 2000 presents new reconstructions of the Atlantic's sea surface temperatures (SST) at the Last Glacial Maximum (LGM), defined at both 21,500–18,000 years B.P. (“Last Isotope Maximum”) and 23,000–19,000 years B.P. (maximum glacial sea level low stand and orbital minimum of solar insolation; EPILOG working group; see Mix et al. [2001]). These reconstructions use 275 sediment cores between the North Pole and 60°S with carefully defined chronostratigraphies. Four categories of core quality are distinguished. More than 100 core sections provide a glacial record with subcentennial- to multicentennial-scale resolution. SST estimates are based on a new set of almost 1000 reference samples of modern planktic foraminifera and on improved transfer-function techniques to deduce SST from census counts of microfossils, including radiolarians and diatoms. New proxies also serve to deduce sea ice boundaries. The GLAMAP 2000 SST patterns differ significantly in crucial regions from the CLIMAP [1981] reconstruction and thus are important in providing updated boundary conditions to initiate and validate computational models for climate prediction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 79 (27). 317+322-323.
    Publication Date: 2019-09-23
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 81 (32). 361, 366-367.
    Publication Date: 2019-09-23
    Description: The fifth Laptev Sea System Project Workshop was held November 25-29,1999, at the State Research Center-Arctic and Antarctic Research Institute in St. Petersburg, Russia.The abstracts of the workshop have been published in Terra Nostra,Vol. 99 (11) by the Alfred Wegener Foundation, Cologne, Germany.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 15 (1). pp. 95-109.
    Publication Date: 2017-01-18
    Description: The southwest Pacific Ocean covers a broad range of surface-water conditions ranging from warm, salty water in the subtropical East Australian Current to fresher, cold water in the Circumpolar Current. Using a new database of planktonic foraminifera assemblages (AUSMAT-F2), we demonstrate that the modern analog technique can be used to accurately reconstruct the magnitude of sea-surfacetemperature (SST) in this region. We apply this technique to data from 29 deep-sea cores along a meridional transect of the southwest Pacific Ocean to estimate the magnitude of SST cooling during the Last Glacial Maximum. We find minimal cooling in the tropics (0°–2°C), moderate cooling in the subtropical midlatitudes (2°–6°C), and maximum cooling to the southeast of New Zealand (6°–10°C). The magnitude of cooling at the sea surface from the tropics to the temperate latitudes is found to generally be less than cooling at the surface of adjacent land masses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: To reconstruct the history of water mass exchange between the NE Atlantic and the Nordic seas, sediment cores from ∼2 km water depth were studied across Termination II (TII) and through the last interglaciation (MIS5e). During early TII the sudden appearance of the low-latitude planktonic foraminifera Beella megastoma is noted in both regions along with a steep decrease in benthic foraminiferal δ18O. Since other proxies indicate that surface waters were cold and stratified because of meltwater, conditions which prevented near-surface thermohaline circulation and vertical convection in the Nordic seas, water mass exchange between the two areas occurred at the subsurface. During later TII, surface conditions changed, and this subsurface circulation style was eventually replaced by vertical convection. In the Nordic seas, B. megastoma vanished from the record together with ice-rafted debris (IRD) at the end of TII, while subpolar foraminiferal abundance rose. Peak interglacial conditions with intensive vertical convection now fully developed, generating a bottom water temperature gradient of ∼4°C between the two areas. However, surface water temperatures deteriorated in the Nordic seas already notably before IRD recurred, and δ18O increased at the end of MIS5e.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 13 (2). pp. 193-204.
    Publication Date: 2017-05-10
    Description: Stable oxygen and-carbon isotope and sedimentological-paleontological investigations supported by accelerator mass spectrometry (14)C datings were carried out on cores from north of 85 degrees N in the eastern central Arctic Ocean. Significant changes in accumulation rates, provenance of ice-rafted debris (IRD), and planktic productivity over the past 80,000 years are documented. During peak glacials, i.e., oxygen isotope stages 4 and 2, the Arctic Ocean was covered by sea ice with decreased seasonal variation, limiting planktic productivity and bulk sedimentation rates. In early stage 3 and during Termination I, major deglaciations of the circum-Arctic regions caused lowered salinities and poor oxygenation of central Arctic surface waters. A meltwater spike and an associated IRD peak dated to similar to 14-12 (14)C ka can be traced over the southern Eurasian Basin of the Arctic Ocean. This event was associated with the early and rapid deglaciation of the marine-based Barents Sea Ice Sheet. A separate Termination Ib meltwater event is most conspicuous in the central Arctic and is associated with characteristic dolomitic carbonate IRD. This lithology suggests an origin of glacial ice from northern Canada and northern Greenland where lower Paleozoic platform carbonates crop extensively out.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-02-10
    Description: The Arctic Ocean is the missing piece for any global model. Records of processes at both long and short timescales will be necessary to predict the future evolution of the Arctic Ocean through what appears to be a period of rapid climate change. Ocean monitoring is impoverished without the long-timescale records available from paleoceanography and the boundary conditions that can be obtained from marine geology and geophysics. The past and the present are the key to our ability to predict the future.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...