ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Indian Ocean biogeochemical processes and ecological variability. , ed. by Wiggert, J. D., Hood, R. R., Naqvi, S. W. A., Brink, K. H. and Smith, S. L. AGU (American Geophysical Union), Washington, DC, USA, pp. 365-384.
    Publication Date: 2012-02-23
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 24 (4). PA4214.
    Publication Date: 2017-05-10
    Description: For modeled sediment cores of the open ocean, a method for predicting simultaneously the ages of four different solid sediment compounds with respect to their depositional year onto the sediment surface is presented. The simulation of time-dependent age distribution in the sediment mixed layer and the eventually accumulating sediment is a prerequisite of a proper data assimilation of marine sediment core data into predictive climate models. Through such a data assimilation, marine paleoclimate data could then be efficiently used in order to optimally determine adjustable model parameters. The age simulation is based on a passive tracer transport method taking into account varying vertical advection rates within the sediment top layers, chemical pore water reactions, and bioturbation. It turns out that different weight fractions of the modeled sediment have different ages in one horizontal geometric depth-in-core level depending on the particle rain onto the sediment and the reactivity of the material within the sediment pore waters. For simultaneous consideration of paleoclimatic tracers associated within one and the same weight fraction, e.g., for calcium carbonate, tracers such as foraminiferal δ13C, and calcium carbonate weight percentages, this may not be critical. However, for simultaneous consideration of calcium carbonate and opal weight percentages, the age difference in the observed weight fractions may have to be corrected. The age offset between CaCO3 and opal depends critically on the sediment accumulation rate. Low-accumulation sites are more strongly affected than high-accumulation sites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 6 (4). pp. 395-430.
    Publication Date: 2020-04-01
    Description: Possible mechanisms for the 80 ppm reduction of atmospheric CO2 partial pressure during the last glaciation were investigated using the Hamburg Ocean Carbon Cycle Model. The three‐dimensional carbon cycle model is based on the velocity field of the Hamburg Large‐Scale Geostrophic Ocean General Circulation Model and uses the same grid as that model. The horizontal resolution (3.5° × 3.5°) is lower than the length scale of narrow upwelling belts which could not be represented adequately in this study, but the large‐scale features of the ocean carbon cycle are reproduced rather well. Sensitivity experiments were carried out to investigate the role of chemical and biological parameters (nutrient cycling, composition of biogenic particulate matter, CO2 solubility) and different circulation regimes for the atmospheric CO2 content. The model responses were compared to deep‐sea sediment core records and ice core data from the last glaciation. Each experiment was compared with observed average tracer patterns during 18–65 kyr B.P. It was found that none of the sensitivity experiments alone could explain all observed tracer changes (atmospheric pCO2, Δδ13Cplanktonic‐benthic, δ13Cbenthic differences, CaCO3 corrosivity indices) simultaneously, even in a qualitative sense. Thus according to the model none of the scenarios tested proves to be completely acceptable. The residual discrepancies between the observed and modeled tracer records can probably be attributed to the as yet inadequate reconstruction of the glacial ocean circulation. It is therefore suggested that more effort should be devoted to realistically reproducing the ice age ocean circulation field making use of the forthcoming glacial radiocarbon data base. The residuals between the realistically modeled and observed carbon cycle tracers (δ13C, CaCO3 saturation) should then reveal more clearly the real cause for the observed pCO2 decrease in the glacial atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...