ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-02
    Description: Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO2. In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO2. In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 27 (1). pp. 11-20.
    Publication Date: 2016-05-02
    Description: We combined data sets of measured sedimentary calcium carbonate (CaCO3) and satellite-derived pelagic primary production to parameterize the relation between CaCO3 content on the Antarctic shelves and primary production in the overlying water column. CaCO3 content predicted in this way was in good agreement with the measured data. The parameterization was then used to chart CaCO3 content on the Antarctic shelves all around the Antarctic, using the satellite-derived primary production. The total inventory of CaCO3 in the bioturbated layer of Antarctic shelf sediments was estimated to be 0.5 Pg C. This quantity is comparable to the total CO2 uptake by the Southern Ocean in only one to a few years (dependent on the uptake estimate and area considered), indicating that the dissolution of these carbonates will neither delay ocean acidification in this area nor augment the Southern Ocean CO2 uptake capacity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-11
    Description: We present measurements of pCO2, O2 concentration, biological oxygen saturation (ΔO2/Ar), and N2 saturation (ΔN2) in Southern Ocean surface waters during austral summer, 2010–2011. Phytoplankton biomass varied strongly across distinct hydrographic zones, with high chlorophyll a (Chl a) concentrations in regions of frontal mixing and sea ice melt. pCO2 and ΔO2/Ar exhibited large spatial gradients (range 90 to 450 µatm and −10 to 60%, respectively) and covaried strongly with Chl a. However, the ratio of biological O2 accumulation to dissolved inorganic carbon (DIC) drawdown was significantly lower than expected from photosynthetic stoichiometry, reflecting the differential time scales of O2 and CO2 air-sea equilibration. We measured significant oceanic CO2 uptake, with a mean air-sea flux (~ −10 mmol m−2 d−1) that significantly exceeded regional climatological values. N2 was mostly supersaturated in surface waters (mean ΔN2 of +2.5%), while physical processes resulted in both supersaturation and undersaturation of mixed layer O2 (mean ΔO2phys = 2.1%). Box model calculations were able to reproduce much of the spatial variability of ΔN2 and ΔO2phys along the cruise track, demonstrating significant effects of air-sea exchange processes (e.g., atmospheric pressure changes and bubble injection) and mixed layer entrainment on surface gas disequilibria. Net community production (NCP) derived from entrainment-corrected surface ΔO2/Ar data, ranged from ~ −40 to 〉 300 mmol O2 m−2 d−1 and showed good coherence with independent NCP estimates based on seasonal mixed layer DIC deficits. Elevated NCP was observed in hydrographic frontal zones and stratified regions of sea ice melt, reflecting physical controls on surface water light fields and nutrient availability.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...