ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 18 (5). pp. 1959-1985.
    Publication Date: 2020-02-06
    Description: Our study presents a basin-scale 3D modeling solution, quantifying and exploring gas hydrate accumulations in the marine environment around the Green Canyon (GC955) area, Gulf of Mexico. It is the first modeling study that considers the full complexity of gas hydrate formation in a natural geological system. Overall, it comprises a comprehensive basin re-construction, accounting for depositional and transient thermal history of the basin, source rock maturation, petroleum components generation, expulsion and migration, salt tectonics and associated multi-stage fault development. The resulting 3D gas hydrate distribution in the Green Canyon area is consistent with independent borehole observations. An important mechanism identified in this study and leading to high gas hydrate saturation (〉 80 vol. %) at the base of the gas hydrate stability zone (GHSZ), is the recycling of gas hydrate and free gas enhanced by high Neogene sedimentation rates in the region. Our model predicts the rapid development of secondary intra-salt mini-basins situated on top of the allochthonous salt deposits which leads to significant sediment subsidence and an ensuing dislocation of the lower GHSZ boundary. Consequently, large amounts of gas hydrates located in the deepest parts of the basin dissociate and the released free methane gas migrates upwards to recharge the GHSZ. In total, we have predicted the gas hydrate budget for the Green Canyon area that amounts to ∼3,256 Mt of gas hydrate which is equivalent to ∼340 Mt of carbon (∼7 x 1011 m3 of CH4 at STP conditions), and consists mostly of biogenic hydrates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 19 . GB1010.
    Publication Date: 2018-03-16
    Description: In this study we present a global distribution pattern and budget of the minimum flux of particulate organic carbon to the sea floor (JPOCα). The estimations are based on regionally specific correlations between the diffusive oxygen flux across the sediment-water interface, the total organic carbon content in surface sediments, and the oxygen concentration in bottom waters. For this, we modified the principal equation of Cai and Reimers [1995] as a basic monod reaction rate, applied within 11 regions where in situ measurements of diffusive oxygen uptake exist. By application of the resulting transfer functions to other regions with similar sedimentary conditions and areal interpolation, we calculated a minimum global budget of particulate organic carbon that actually reaches the sea floor of ∼0.5 GtC yr−1 (〉1000 m water depth (wd)), whereas approximately 0.002–0.12 GtC yr−1 is buried in the sediments (0.01–0.4% of surface primary production). Despite the fact that our global budget is in good agreement with previous studies, we found conspicuous differences among the distribution patterns of primary production, calculations based on particle trap collections of the POC flux, and JPOCα of this study. These deviations, especially located at the southeastern and southwestern Atlantic Ocean, the Greenland and Norwegian Sea and the entire equatorial Pacific Ocean, strongly indicate a considerable influence of lateral particle transport on the vertical link between surface waters and underlying sediments. This observation is supported by sediment trap data. Furthermore, local differences in the availability and quality of the organic matter as well as different transport mechanisms through the water column are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 29 (5). pp. 691-707.
    Publication Date: 2019-09-23
    Description: Literature data on benthic dissolved iron (DFe) fluxes (µmol m−2 d−1), bottom water oxygen concentrations (O2BW, μM), and sedimentary carbon oxidation rates (COX, mmol m−2 d−1) from water depths ranging from 80 to 3700 m were assembled. The data were analyzed with a diagenetic iron model to derive an empirical function for predicting benthic DFe fluxes: inline image where γ (= 170 µmol m−2 d−1) is the maximum flux for sediments at steady state located away from river mouths. This simple function unifies previous observations that COX and O2BW are important controls on DFe fluxes. Upscaling predicts a global DFe flux from continental margin sediments of 109 ± 55 Gmol yr−1, of which 72 Gmol yr−1 is contributed by the shelf (〈200 m) and 37 Gmol yr−1 by slope sediments (200–2000 m). The predicted deep-sea flux (〉2000 m) of 41 ± 21 Gmol yr−1 is unsupported by empirical data. Previous estimates of benthic DFe fluxes derived using global iron models are far lower (approximately 10–30 Gmol yr−1). This can be attributed to (i) inadequate treatment of the role of oxygen on benthic DFe fluxes and (ii) improper consideration of continental shelf processes due to coarse spatial resolution. Globally averaged DFe concentrations in surface waters simulated with the intermediate-complexity University of Victoria Earth System Climate Model were a factor of 2 higher with the new function. We conclude that (i) the DFe flux from marginal sediments has been underestimated in the marine iron cycle and (ii) iron scavenging in the water column is more intense than currently presumed.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: We measured halogen concentrations and I-129/I ratios in five drilling sites of Integrated Ocean Drilling Program Expedition 311 (offshore Vancouver Island, Canada) in order to identify potential sources of fluids and methane in gas hydrate fields. Iodine is dominated by organic decomposition and transports with fluids in reducing environments and the presence of the cosmogenic radioisotope I-129 (T-1/2 = 15.7 Ma) allows the age determination of organic sources for iodine. Here we report halogen concentrations in 135 pore water samples, I concentrations in 48 sediment samples, and I-129/I ratios measured in a subset of 20 pore water samples. Most I-129/I ratios fall into a range around 500 x 10(-15), corresponding to a minimum age of 25 Ma and the lowest ratio of 188 x 10(-15) (T-min = 47 Ma) was observed at 208 m below sea floor (mbsf) in Site 1326. These ages are considerably older than that of the local sediments in the gas hydrate fields and that of the subducting sediments on the Juan de Fuca plate, indicating that old, accreted sediments in the accretionary wedge contribute a significant amount of iodide and, by association, of methane to the gas hydrate occurrences. A geochemical transport-reaction model was applied to simulate the advection of deeply sourced fluids and the release of iodide, bromide, and ammonia in the host sediments due to organic matter degradation. The model was first tested with data from two well studied areas, Ocean Drilling Program Site 1230 (Peru margin) and Site 1245 (Hydrate Ridge). The model results for the Expedition 311 sites indicate that the in situ release of young iodine is relatively minor in comparison to the contribution of migrating fluids, carrying large amounts of old iodine from deep sources. The comparison between the sites demonstrates that the total organic content has a strong effect on the rate of in situ iodine release and that lateral flows along fractures can have a significant influence on pore water chemistry, especially at the Cascadia margin. The iodine results indicate that mobilization and transport of methane from sources in the upper plate of active margins is an important process which can also play a substantial role in the formation of gas hydrate fields.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 (L22604).
    Publication Date: 2019-09-23
    Description: Focused fluid expulsion at cold vents is a common feature of subduction zones, serving as an important backflux of water and volatile elements to the oceanic reservoir. The strong enrichment of iodine in fluids collected from mounds along the Central American convergent Margin allowed the determination of 129I/I ratios for age calculations in order to determine potential source formations in this active, erosional margin. The majority of the determined iodine ages are between 40 and 20 Ma. Because these ages are older than the age of host sediments and underthrust sediments on the oceanic plate (〈18 Ma), a major contribution of iodine must come from old, organic rich sources in the upper plate. Both the iodine concentrations and ages determined for the mounds in this study are similar to reported values for hydrate fields at accretionary margins, indicating that iodine and associated organic carbon cycling at both erosional and accretionary margins may occur on similar time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 11 (8). Q08S27.
    Publication Date: 2019-09-23
    Description: Five sediment cores from cold seeps at the forearc off Costa Rica were used to explore the relationship between fluid advection, dissolved Ca concentrations in upward migrating fluids, and authigenic CaCO3 precipitation. A numerical transport-reaction model was used to determine rates of anaerobic oxidation of methane (AOM), CaCO3 precipitation, and benthic fluxes of solutes. Production of carbonate alkalinity and formation of authigenic carbonates is most intense at intermediate flow rates (3–40 cm a−1) and reduced under low and high flux conditions (0.1 and 200 cm a−1). Dissolved Ca concentrations observed in the vent fluids off Costa Rica cover a wide range between 4 and 31 mM, clearly exceeding seawater concentrations at two locations. Systematic model runs showed that high Ca concentrations in ascending fluids enhance the rate of authigenic carbonate production at moderate flow rates leading to an almost quantitative fixation of deeply derived Ca in authigenic carbonates. Hence, CaCO3 precipitation is not only controlled by Ca diffusing into the sediment from bottom water, but also by the Ca concentration in ascending fluids. Thus, Ca enriched fluids offer a reason for enhanced subsurface CaCO3 precipitation and the occurrence of carbonate caps on dewatering structures in the Central American fore-arc. Based on average precipitation rates deduced from the systematic model runs it is possible to give a rough estimate of the global Ca-fixation at cold seeps (∼2·1010 mol Ca a−1), which suggests that cold seeps are most likely not of key importance with respect to Ca cycling in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-14
    Description: The sensitivity of sea level to melting from polar ice sheets and glaciers during recent natural and anthropogenic climate fluctuations is poorly constrained beyond the period of direct observation by satellite. We have investigated glacial meltwater events during the Anthropocene by adapting the pioneering approach of modeling trends in d18O in the pore waters of deep‐sea cores, previously used to constrain the size of ice sheets during the Last Glacial Maximum. We show that during recent warm periods, meltwater from glacier retreat drains into the coastal fjords, leaving a signature of depleted d18O values and low Cl concentrations in the pore water profiles of rapidly accumulating sediments. Here we model such pore water profiles in a piston core to constrain the timing and magnitude of an ice sheet retreat event at Caley Glacier on the west Antarctic Peninsula, and the result is compared with local ice front movement. This approach of pore water modeling was then applied in another kasten core and tested by a series of sensitivity analyses. The results suggest that our approach may be applied in fjords of different sedimentary settings to reconstruct the glacier history and allow insight into the sensitivity of polar glaciers to abrupt warming events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-06-29
    Description: Seafloor seepage of hydrocarbon-bearing fluids has been identified in a number of marine forearcs. However, temporal variations in seep activity and the structural and tectonic parameters that control the seepage often remain poorly constrained. Subduction-zone earthquakes for example, are often discussed to trigger seafloor seepage but causal links that go beyond theoretical considerations have not yet been fully established. This is mainly due to the inaccessibility of offshore epicentral areas, the infrequent occurrence of large earthquakes, and challenges associated with offshore monitoring of seepage over large areas and sufficient time periods. Here, we report visual, geochemical, geophysical, and modelling results and observations from the Concepción Methane Seep Area (offshore Central Chile) located in the rupture area of the 2010 Mw. 8.8 Maule earthquake. High methane concentrations in the oceanic water column and a shallow sub-bottom depth of sulfate penetration indicate active methane seepage. The stable carbon isotope signature of the methane and hydrocarbon composition of the released gas indicate a mixture of shallow-sourced biogenic gas and a deeper sourced thermogenic component. Pristine fissures and fractures observed at the seafloor together with seismically imaged large faults in the marine forearc may represent effective pathways for methane migration. Upper-plate fault activity with hydraulic fracturing and dilation is in line with increased normal Coulomb stress during large plate-boundary earthquakes, as exemplarily modelled for the 2010 earthquake. On a global perspective our results point out the possible role of recurring large subduction-zone earthquakes in driving hydrocarbon seepage from marine forearcs over long timescales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 11 (5).
    Publication Date: 2019-09-23
    Description: Submarine slope failures occur at all continental margins, but the processes generating different mass wasting phenomena remain poorly understood. Multibeam bathymetry mapping of the Middle America Trench reveals numerous continental slope failures of different dimensions and origin. For example, large rotational slumps have been interpreted to be caused by slope collapse in the wake of subducting seamounts. In contrast, the mechanisms generating translational slides have not yet been described. Lithology, shear strength measurements, density, and pore water alkalinity from a sediment core across a slide plane indicate that a few centimeters thick intercalated volcanic tephra layer marks the detachment surface. The ash layer can be correlated to the San Antonio tephra, emplaced by the 6000 year old caldera-forming eruption from Masaya-Caldera, Nicaragua. The distal deposits of this eruption are widespread along the continental slope and ocean plate offshore Nicaragua. Grain size measurements permit us to estimate the reconstruction of the original ash layer thickness at the investigated slide. Direct shear test experiments on Middle American ashes show a high volume reduction during shearing. This indicates that marine tephra layers have the highest hydraulic conductivity of the different types of slope sediment, enabling significant volume reduction to take place under undrained conditions. This makes ash layers mechanically distinct within slope sediment sequences. Here we propose a mechanism by which ash layers may become weak planes that promote translational sliding. The mechanism implies that ground shaking by large earthquakes induces rearrangement of ash shards causing their compaction (volume reduction) and produces a rapid accumulation of water in the upper part of the layer that is capped by impermeable clay. The water-rich veneer abruptly reduces shear strength, creating a detachment plane for translational sliding. Tephra layers might act as slide detachment planes at convergent margins of subducting zones, at submarine slopes of volcanic islands, and at submerged volcano slopes in lakes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-05-10
    Description: The residual dark unit of the most recent eastern Mediterranean sapropel (S1) is usually overlain by sediments with enhanced concentrations of MnOx in two separated layers. The variability and magnitude of the Mn enrichment at different locations and water depths indicate that Mn must have been added preferentially to sediments at intermediate (1–2 km) water depths. We propose a two-stage mechanism for the Mn enrichment that involves decreasing oxygenation with increasing water depth. This mechanism involves the loss of reduced Mn2+ from the deepest sediments (〉2 km water depth) into overlying anoxic waters and a variable gain of MnOx in sediments in contact with oxygenated waters at shallower depth. In the S1 unit that receives the extra MnOx input, an upper higher Mn-enriched zone (〉3 wt %) is maintained continuously at the top of the accumulating S1 unit because the pore waters are anoxic at shallow sediment depth while bottom waters are oxic to some degree. In a reactive-transport model, the Mn enrichment in the upper zone could not be supported by normal sediment diagenesis. Thus the MnOx in the upper Mn horizon must have formed mainly in the water column. The MnOx in the upper Mn-enriched zone adsorbed Mo and Li from seawater in a similar manner as other Mn-enriched oxic sediments, nodules, and crusts, with a Mn:Mo ratio of ∼600:1, a Mn:Li ratio of ∼750:1, and a δ98/95MoMOMO of −2.5 ‰.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...