ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: The potential of mining seafloor massive sulfide deposits for metals such as Cu, Zn, and Au is currently debated. One key challenge is to predict where the largest deposits worth mining might form, which in turn requires understanding the pattern of subseafloor hydrothermal mass and energy transport. Numerical models of heat and fluid flow are applied to illustrate the important role of fault zone properties (permeability and width) in controlling mass accumulation at hydrothermal vents at slow spreading ridges. We combine modeled mass-flow rates, vent temperatures, and vent field dimensions with the known fluid chemistry at the fault-controlled Logatchev 1 hydrothermal field of the Mid-Atlantic Ridge. We predict that the 135 kilotons of SMS at this site (estimated by other studies) can have accumulated with a minimum depositional efficiency of 5% in the known duration of hydrothermal venting (58,200 year age of the deposit). In general, the most productive faults must provide an efficient fluid pathway while at the same time limit cooling due to mixing with entrained cold seawater. This balance is best met by faults that are just wide and permeable enough to control a hydrothermal plume rising through the oceanic crust. Model runs with increased basal heat input, mimicking a heat flow contribution from along-axis, lead to higher mass fluxes and vent temperatures, capable of significantly higher SMS accumulation rates. Nonsteady state conditions, such as the influence of a cooling magmatic intrusion beneath the fault zone, also can temporarily increase the mass flux while sustaining high vent temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The relationships between tectonic processes, magmatism, and hydrothermal venting along ∼600 km of the slow-spreading Mariana back-arc between 12.7°N and 18.3°N reveal a number of similarities and differences compared to slow-spreading mid-ocean ridges. Analysis of the volcanic geomorphology and structure highlights the complexity of the back-arc spreading center. Here, ridge segmentation is controlled by large-scale basement structures that appear to predate back-arc rifting. These structures also control the orientation of the chains of cross-arc volcanoes that characterize this region. Segment-scale faulting is oriented perpendicular to the spreading direction, allowing precise spreading directions to be determined. Four morphologically distinct segment types are identified: dominantly magmatic segments (Type I); magmatic segments currently undergoing tectonic extension (Type II); dominantly tectonic segments (Type III); and tectonic segments currently undergoing magmatic extension (Type IV). Variations in axial morphology (including eruption styles, neovolcanic eruption volumes, and faulting) reflect magma supply, which is locally enhanced by cross-arc volcanism associated with N-S compression along the 16.5°N and 17.0°N segments. In contrast, cross-arc seismicity is associated with N-S extension and increased faulting along the 14.5°N segment, with structures that are interpreted to be oceanic core complexes—the first with high-resolution bathymetry described in an active back-arc basin. Hydrothermal venting associated with recent magmatism has been discovered along all segment types.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 5 (7). pp. 655-658.
    Publication Date: 2020-02-06
    Description: As land-based mineral resources become increasingly difficult and expensive to acquire, the potential for mining resources from the deep seafloor has become widely discussed and debated. Exploration leases are being granted, and technologies are under development. However, the quantity and quality of the resources are uncertain, and many worry about risks to vulnerable deep-sea ecosystems. Deep-sea mining has become part of the discussion of the United Nations Sustainable Development Goals. In this article we provide a summary of benefits, costs, and uncertainties that surround this potentially attractive but contentious topic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. , ed. by Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. and Thomson, R. E. Geophysical Monograph Series, 91 . AGU (American Geophysical Union), Washington, DC, pp. 115-157. ISBN 0-87590-048-8
    Publication Date: 2016-05-31
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 16 (12). pp. 4449-4478.
    Publication Date: 2019-09-23
    Description: The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main “ore” minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 90 (13). pp. 110-111.
    Publication Date: 2019-09-23
    Description: The majority of known high-temperature hydrothermal vents occur at mid-ocean ridges and back-arc spreading centers, typically at water depths from 2000 to 4000 meters. Compared with 30 years of hydrothermal research along spreading centers in the deep parts of the ocean, exploration of the approximately 700 submarine arc volcanoes is relatively recent [de Ronde et al., 2003]. At these submarine arc volcanoes, active hydrothermal vents are located at unexpectedly shallow water depth (95% at 〈1600-meter depth), which has important consequences for the style of venting, the nature of associated mineral deposits, and the local biological communities. As part of an ongoing multinational research effort to study shallow submarine volcanic arcs, two hydrothermal systems in the submerged part of the Aeolian arc have been investigated in detail during research cruises by R/V Poseidon (July 2006) and R/V Meteor (August 2007). Comprehensive seafloor video surveys were conducted using a remotely operated vehicle, and drilling to a depth of 5 meters was carried out using a lander-type submersible drill. This research has resulted in the first detailed, three-dimensional documentation of shallow submarine hydrothermal systems on arc volcanoes
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 13 . Q09006.
    Publication Date: 2018-02-28
    Description: The Woodlark Basin is one of the rare places on earth where the transition from continental breakup to seafloor spreading can be observed. The potential juxtaposition of continental rocks, a large magmatic heat source, crustal-scale faulting, and hydrothermal circulation has made the Woodlark Basin a prime target for seafloor mineral exploration. However, over the past 20 years, only two locations of active hydrothermalism had been found. In 2009 we surveyed 435 km of the spreading axis for the presence of hydrothermal plumes. Only one additional plume was found, bringing the total number of plumes known over 520 km of ridge axis to only 3, much less than at ridges with similar spreading rates globally. Particularly the western half of the basin (280 km of axis) is apparently devoid of high temperature plumes despite having thick crust and a presumably high magmatic budget. This paucity of hydrothermal activity may be related to the peculiar tectonic setting at Woodlark, where repeated ridge jumps and a re-location of the rotation pole both lead to axial magmatism being more widely distributed than at many other, more mature and stable mid-ocean ridges. These factors could inhibit the development of both a stable magmatic heat source and the deeply penetrating faults needed to create long-lived hydrothermal systems. We conclude that large seafloor massive sulfide deposits, potential targets for seafloor mineral exploration, will probably not be present along the spreading axis of the Woodlark Basin, especially in its younger, western portion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-12
    Description: Submersible investigations employing heat flow measurements (12 stations), sampling and imagery of the two relict high-temperature hydrothermal zones of the TAG field, the Alvin and Mir sulfide zones, elucidate relations between heat sources and mineralization including an active sulfide mound that has been the focus of prior studies. Values of heat flow in the Mir zone and at the margin of the active mound are inversely proportional to distance from adjacent volcanic centers. This observation supports the hypothesis that intrusions at volcanic centers adjacent to the high-temperature hydrothermal zones supply the heat to drive hydrothermal activity. The chronology of hydrothermal deposits in the different zones indicates that the intrusions are episodic with field-wide high-temperature hydrothermal events recurring at intervals of tens of thousands of years, while activity at individual zones may recur at intervals of hundreds to thousands of years. A sequence of hydrothermal deposits ranges to at least 140,000 years ago from massive sulfides forming at the active mound, to recrystallization of sulfides in the active and relict zones, to pyritization of an inactive mound in the Alvin zone; low-temperature mineral phases precipitate before, during and after the sulfides.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-11
    Description: The TAG active hydrothermal mound, located 2.4 km east of the neovolcanic zone at 26°N, Mid-Atlantic Ridge, is −200 m in diameter, exhibits 50 m of relief, and is covered entirely by hydrothermal precipitates. Eight different types of vent solids were recovered from the mound by the submersibles Alvin and Mir in 1986, 1990, and 1991. Detailed petrographic and geochemical studies of samples and their distribution are used to deduce patterns of fluid flow and seawater/hydrothermal fluid interaction. Geochemical modeling calculations using fluid composition data corroborate these interpretations. Current activity includes highly focused flow of 363°C fluid from a chimney cluster on the top of the mound and deposition of a high ƒS2-ƒO2 mineral assemblage that reflects low concentrations of H2S in black smoker fluid. Slow percolation of black smoker fluid pooled beneath the black smoker cluster and entrainment of seawater result in formation of massive sulfide crusts and massive anhydrite. These three sample types are enriched in Co and Se. Blocks of sulfide and white smoker chimneys, enriched in Zn, Au, Ag, Sb, Cd, and Pb, are forming on the surface of the mound from black smoker fluid that has been modified by mixing with entrained seawater, precipitation of sulfides and anhydrite, and dissolution of sphalerite within the mound. This is the first time that on-going remobilization, zone refinement, and significant modification of high-temperature fluid in the near surface has been documented in a seafloor hydrothermal system. Deposits of ocherous material and massive sulfide with outer oxidized layers that formed during previous hydrothermal episodes are exposed on the steep outer walls of the mound. Studies of the full range of samples demonstrate that highly focused fluid flow, consequent seawater entrainment, and mixing within the mound can result in formation of a large seafloor hydrothermal deposit exhibiting sample types similar to those observed in Cyprus-type ore bodies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-25
    Description: Forty-nine hydrothermal sulfide-sulfate rock samples from the Endeavour Segment of the Juan de Fuca Ridge, northeastern Pacific Ocean, were dated by measuring the decay of 226Ra (half-life of 1600 years) in hydrothermal barite to provide a history of hydrothermal venting at the site over the past 6000 years. This dating method is effective for samples ranging in age from ∼200 to 20,000 years old and effectively bridges an age gap between shorter- and longer-lived U-series dating techniques for hydrothermal deposits. Results show that hydrothermal venting at the active High Rise, Sasquatch, and Main Endeavour fields began at least 850, 1450, and 2300 years ago, respectively. Barite ages of other inactive deposits on the axial valley floor are between ∼1200 and ∼2200 years old, indicating past widespread hydrothermal venting outside of the currently active vent fields. Samples from the half-graben on the eastern slope of the axial valley range in age from ∼1700 to ∼2925 years, and a single sample from outside the axial valley, near the westernmost valley fault scarp is ∼5850 ± 205 years old. The spatial relationship between hydrothermal venting and normal faulting suggests a temporal relationship, with progressive younging of sulfide deposits from the edges of the axial valley toward the center of the rift. These relationships are consistent with the inward migration of normal faulting toward the center of the valley over time and a minimum age of onset of hydrothermal activity in this region of 5850 years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...