ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (2)
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters (30).
    Publication Date: 2018-02-20
    Description: We present evidence showing that the nonlinear dynamic heating (NDH) in the tropical Pacific ocean heat budget is essential in the generation of intense El Niño events as well as the observed asymmetry between El Niño (warm) and La Niña (cold) events. The increase in NDH associated with the enhanced El Niño activity had an influence on the recent tropical Pacific warming trend and it might provide a positive feedback mechanism for climate change in the tropical Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 19 (PA4009).
    Publication Date: 2017-05-10
    Description: We present a numerical eigenmode analysis of an intermediate El Nin˜o–Southern Oscillation (ENSO) model which is driven by present-day observed background conditions as well as by simulated background conditions for the Last Glacial Maximum (LGM) about 21,000 years ago. The background conditions are obtained from two LGM simulations which were performed with the National Center for Atmospheric Research climate system model (CSM1.4) and an Earth system model of intermediate complexity (ECBilt-CLIO). Our analysis clearly shows that the leading present-day unstable recharge-discharge mode changes its stability as well as its frequency during LGM conditions. Simulated LGM background conditions were favorable to support large-amplitude self-sustained interannual ENSO variations in the tropical Pacific. Our analysis indicates that off-equatorial climate conditions as well as a shoaling of the thermocline play a crucial role in amplifying the LGM ENSO mode.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...