ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 39 (L01306).
    Publication Date: 2016-02-24
    Description: The combination of the Sunda megathrust and the (strike-slip) Sumatran Fault (SF) represents a type example of slip-partitioning. However, superimposed on the SF are geometrical irregularities that disrupt the local strain field. The largest such feature is in central Sumatra where the SF splits into two fault strands up to 35 km apart. A dense local network was installed along a 350 km section around this bifurcation, registering 1016 crustal events between April 2008 and February 2009. 528 of these events, with magnitudes between 1.1 and 6.0, were located using the double-difference relative location method. These relative hypocentre locations reveal several new features about the crustal structure of the SF. Northwest and southeast of the bifurcation, where the SF has only one fault strand, seismicity is strongly focused below the surface trace, indicating a vertical fault that is seismogenic to ∼15 km depth. By contrast intense seismicity is observed within the bifurcation, displaying streaks in plan and cross-section that indicate a complex system of faults bisecting the bifurcation. In combination with analysis of topography and focal mechanisms, we propose that the bifurcation is a strike-slip duplex system with complex faulting between the two main fault branches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-15
    Description: In 2005 an amphibious seismic network was deployed on the Chilean forearc between 41.75°S and 43.25°S. 364 local events were observed in a 11-month period. A subset of the P and S arrival times were inverted for hypocentral coordinates, 1-D velocity structure and station delays. Main seismic activity occurred predominantly in a belt parallel to the coast of Chiloé Island in a depth range of 12–30 km presumably related to the plate interface. The 30° inclination of the shallow part of the Wadati-Benioff zone is similar to observations further north indicating that oceanic plate age is not controlling the subduction angle of the shallower part for the Chilean subduction zone. The down-dip termination of abundant intermediate depth seismicity at approximately 70 km depth seems to be related to the young age (and high temperature) of the oceanic plate. Crustal seismicity is associated with the Liquiñe-Ofqui fault zone and active volcanoes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 39 (L01306).
    Publication Date: 2016-06-20
    Description: The combination of the Sunda megathrust and the (strike-slip) Sumatran Fault (SF) represents a type example of slip-partitioning. However, superimposed on the SF are geometrical irregularities that disrupt the local strain field. The largest such feature is in central Sumatra where the SF splits into two fault strands up to 35 km apart. A dense local network was installed along a 350 km section around this bifurcation, registering 1016 crustal events between April 2008 and February 2009. 528 of these events, with magnitudes between 1.1 and 6.0, were located using the double-difference relative location method. These relative hypocentre locations reveal several new features about the crustal structure of the SF. Northwest and southeast of the bifurcation, where the SF has only one fault strand, seismicity is strongly focused below the surface trace, indicating a vertical fault that is seismogenic to ∼15 km depth. By contrast intense seismicity is observed within the bifurcation, displaying streaks in plan and cross-section that indicate a complex system of faults bisecting the bifurcation. In combination with analysis of topography and focal mechanisms, we propose that the bifurcation is a strike-slip duplex system with complex faulting between the two main fault branches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 118 (10). pp. 5372-5390.
    Publication Date: 2018-04-27
    Description: An important tool for understanding deformation occurring within a subduction zone is the measurement of seismic anisotropy through observations of shear wave splitting (SWS). In Sumatra, two temporary seismic networks were deployed between December 2007 and February 2009, covering the fore arc between the fore-arc islands to the back arc. We use SKS and local SWS measurements to determine the type, amount, and location of anisotropy. Local SWS measurements from the fore-arc islands exhibit trench-parallel fast directions which can be attributed to shape preferred orientation of cracks/fractures in the overriding sediments. In the Sumatran Fault region, the predominant fast direction is fault/trench parallel, while in the back-arc region it is trench perpendicular. The trench-perpendicular measurements exhibit a positive correlation between delay time and raypath length in the mantle wedge, while the fault-parallel measurements are similar to the fault-parallel fast directions observed for two crustal events at the Sumatran Fault. This suggests that there are two layers of anisotropy: one due to entrained flow within the mantle wedge and a second layer within the overriding crust due to the shear strain caused by the Sumatran Fault. SKS splitting results show a NNW-SSE fast direction with delay times of 0.8–3.0 s. The fast directions are approximately parallel to the absolute plate motion of the subducting Indo-Australian Plate. The small delay times exhibited by the local SWS (0.05–0.45 s), in combination with the large SKS delay times, suggest that the anisotropy generating the teleseismic SWS is dominated by entrained flow in the asthenosphere below the slab.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-04-04
    Description: We installed a dense, amphibious, temporary seismological network to study the seismicity and structure of the seismogenic zone in southern Chile between 37° and 39°S, the nucleation area of the great 1960 Chile earthquake. 213 local earthquakes with 14.754 onset times were used for a simultaneous inversion for the 1-D velocity model and precise earthquake locations. Relocated artificial shots suggest an accuracy of the earthquake hypocenter of about 1 km (horizontally) and 500 m (vertically). Crustal events along trench-parallel and transverse, deep-reaching faults reflect the interseismic transpressional deformation of the forearc crust due to the subduction of the Nazca plate. The transverse faults seems to accomplish differential lateral stresses between subduction zone segments. Many events situated in an internally structured, planar seismicity patch at 20 to 40 km depth near the coast indicate a stress concentration at the plate's interface at 38°S which might in part be induced by the fragmented forearc structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...