ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • AGU (American Geophysical Union)  (2)
Collection
  • Other Sources  (2)
Publisher
Years
  • 1
    Publication Date: 2019-09-23
    Description: Large-scale, catastrophic mass wasting is a major process contributing to the dismantling of oceanic intraplate volcanoes. Recent studies, however, have highlighted a possible feedback relationship between flank collapse, or incipient instability, and subsequent episodes of structural rearrangement and/or renewed volcano growth. The Teno massif, located in northwestern Tenerife (Canary Islands), is a deeply eroded Miocene shield volcano that was built in four major eruptive phases punctuated by two lateral collapses, each removing 〉20–25 km3 of the volcano's north flank. In this paper, we use detailed field observations and petrological and geochemical data to evaluate possible links between large-scale landslides and subsequent volcanism/magmatism during Teno's evolution. Inspection of key stratigraphic sequences reveals that steep angular unconformities, relics of paleolandslide scars, are marked by polymict breccias. Near their base, these deposits typically include abundant juvenile pyroclastic material, otherwise scarce in the region. While some of Teno's most evolved, low-density magmas were produced just before flank collapses, early postlandslide lava sequences are characterized by anomalously high proportions of dense ankaramite flows, extremely rich in clinopyroxene and olivine crystals. A detailed sampling profile shows transitions from low-Mg # lavas relatively rich in SiO2 to lavas with low silica content and comparatively high Mg # after both landslides. Long-term variations in Zr/Nb, normative nepheline, and La/Lu are coupled but do not show a systematic correlation with stratigraphic boundaries. We propose that whereas loading of the growing precollapse volcano promoted magma stagnation and differentiation, the successive giant landslides modified the shallow volcano-tectonic stress field at Teno, resulting in widespread pyroclastic eruptions and shallow magma reservoir drainage. This rapid unloading of several tens of km3 of near-surface rocks appears to have upset magma differentiation processes, while facilitating the remobilization and tapping of denser ankaramite magmas that were stored in the uppermost mantle. Degrees of mantle melting coincidently reached a maximum in the short time interval between the two landslides and declined shortly after, probably reflecting intrinsic plume processes rather than a collapse-induced influence on mantle melting. Our study of Teno volcano bears implications for other oceanic volcanoes where short-term compositional variations may also directly relate to major flank collapse events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 (6). p. 1296.
    Publication Date: 2018-02-20
    Description: The island of Tenerife is composed of three Miocene shields, which are centered by the Cañadas volcano since the Pliocene. Tenerife sits on more than 2 km thick oceanic sediments. Quaternary volcanism of the Cañadas series and giant landslides were principally confined to triaxial rift zones. The mechanism of triaxial rifting, however, has remained unclear. Physical analog models show that these rift zones may have formed by gravity-driven lateral escape of island segments, induced by loading of the deformable substratum. For experiments scaled to Tenerife, three adjacent sand cones were mounted onto viscous PDMS substratum. Gravitational spreading caused circumferential expansion of each cone, until a large edifice (Cañadas) was constructed in their center. The older cones now acted each as a buttress; radial fractures were overprinted by fractional spreading of the Cañadas edifice. This resulted in formation of three main extensional zones, resembling the triaxial rifting configuration of Tenerife.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...