ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Microbathymetry data, in situ observations, and sampling along the 138200N and 138200N oceanic core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the alongextension direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover is shed. Detachment fault rocks are primarily basalt fault breccia at 138200N OCC, and gabbro and peridotite at 138300N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of lithologies in the detachment zone. Finally, faulting and volcanism dismember the 138300N OCC, with widespread present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the 138200N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous relationship between hydrothermal activity and oceanic detachment formation and evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-22
    Description: The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is similar to 60% larger in models (-0.72 vs. -0.44 PgC year-1, 1998-2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year-1 in observational product and +0.54 PgCO2-e year-1 in model median) and CH4 (+0.21 PgCO2-e year-1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%-60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate. The coastal ocean regulates greenhouse gases. It acts as a sink of carbon dioxide (CO2) but also releases nitrous oxide (N2O) and methane (CH4) into the atmosphere. This synthesis contributes to the second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2) and provides a comprehensive view of the coastal air-sea fluxes of these three greenhouse gases at the global scale. We use a multi-faceted approach combining gap-filled observation-based products and ocean biogeochemical models. We show that the global coastal ocean is a net sink of CO2 in both observational products and models, but the coastal uptake of CO2 is similar to 60% larger in models than in observation-based products due to model-product differences in seasonality. The coastal CO2 sink is strengthening but the magnitude of this strengthening is poorly constrained. We also find that the coastal emissions of N2O and CH4 counteract a substantial part of the effect of coastal CO2 uptake in the atmospheric radiative balance (by 30%-60% in CO2-equivalents), highlighting the need to consider these three gases together to understand the influence of the coastal ocean on climate. We synthesize air-sea fluxes of CO2, nitrous oxide and methane in the global coastal ocean using observation-based products and ocean models The coastal ocean CO2 sink is 60% larger in ocean models than in observation-based products due to systematic differences in seasonality Coastal nitrous oxide and methane emissions offset 30%-60% of the CO2 coastal uptake in the net radiative balance
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-23
    Description: In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low, and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (〈1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect of increasing phytoplankton biomass” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-14
    Description: Integrated Ocean Drilling Program (IODP) Expedition 316 Sites C0006 and C0007 examined the deformation front of the Nankai accretionary prism offshore the Kii Peninsula, Japan. In the drilling area, the frontal thrust shows unusual behavior as compared to other regions of the Nankai Trough. Drilling results, integrated with observations from seismic reflection profiles, suggest that the frontal thrust has been active since ∼0.78–0.436 Ma and accommodated ∼13 to 34% of the estimated plate convergence during that time. The remainder has likely been distributed among out-of-sequence thrusts further landward and/or accommodated through diffuse shortening. Unlike results of previous drilling on the Nankai margin, porosity data provide no indication of undercompaction beneath thrust faults. Furthermore, pore water geochemistry data lack clear indicators of fluid flow from depth. These differences may be related to coarser material with higher permeability or more complex patterns of faulting that could potentially provide more avenues for fluid escape. In turn, fluid pressures may affect deformation. Well-drained, sand-rich material under the frontal thrust could have increased fault strength and helped to maintain a large taper angle near the toe. Recent resumption of normal frontal imbrication is inferred from seismic reflection data. Associated décollement propagation into weaker sediments at depth may help explain evidence for recent slope failures within the frontal thrust region. This evidence consists of seafloor bathymetry, normal faults documented in cores, and low porosities in near surface sediments that suggest removal of overlying material. Overall, results provide insight into the complex interactions between incoming materials, deformation, and fluids in the frontal thrust region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-27
    Description: We present new analytical data of major and trace elements for the geological MPI-DING glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, GOR132-G, BM90/21-G, T1-G, and ATHO-G. Different analytical methods were used to obtain a large spectrum of major and trace element data, in particular, EPMA, SIMS, LA-ICPMS, and isotope dilution by TIMS and ICPMS. Altogether, more than 60 qualified geochemical laboratories worldwide contributed to the analyses, allowing us to present new reference and information values and their uncertainties (at 95% confidence level) for up to 74 elements. We complied with the recommendations for the certification of geological reference materials by the International Association of Geoanalysts (IAG). The reference values were derived from the results of 16 independent techniques, including definitive (isotope dilution) and comparative bulk (e.g., INAA, ICPMS, SSMS) and microanalytical (e.g., LA-ICPMS, SIMS, EPMA) methods. Agreement between two or more independent methods and the use of definitive methods provided traceability to the fullest extent possible. We also present new and recently published data for the isotopic compositions of H, B, Li, O, Ca, Sr, Nd, Hf, and Pb. The results were mainly obtained by high-precision bulk techniques, such as TIMS and MC-ICPMS. In addition, LA-ICPMS and SIMS isotope data of B, Li, and Pb are presented.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-15
    Description: This study presents basin-wide anthropogenic CO2 inventory estimates for the Indian Ocean based on measurements from the World Ocean Circulation Experiment/Joint Global Ocean Flux Study global survey. These estimates employed slightly modified ΔC* and time series techniques originally proposed by Gruber et al. [1996] and Wallace [1995], respectively. Together, the two methods yield the total oceanic anthropogenic CO2 and the carbon increase over the past 2 decades. The highest concentrations and the deepest penetrations of anthropogenic carbon are associated with the Subtropical Convergence at around 30° to 40°S. With both techniques, the lowest anthropogenic CO2 column inventories are observed south of 50°S. The total anthropogenic CO2 inventory north of 35°S was 13.6±2 Pg C in 1995. The inventory increase since GEOSECS (Geochemical Ocean Sections Program) was 4.1±1 Pg C for the same area. Approximately 6.7±1 Pg C are stored in the Indian sector of the Southern Ocean, giving a total Indian Ocean inventory of 20.3 ±3 Pg C for 1995. These estimates are compared to anthropogenic CO2 inventories estimated by the Princeton ocean biogeochemistry model. The model predicts an Indian Ocean sink north of 35°S that is only 0.61–0.68 times the results presented here; while the Southern Ocean sink is nearly 2.6 times higher than the measurement-based estimate. These results clearly identify areas in the models that need further examination and provide a good baseline for future studies of the anthropogenic inventory.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-02-01
    Description: Particle sinking velocity is considered to be a controlling factor for carbon transport to the deep sea and thus carbon sequestration in the oceans. The velocities of the material exported to depth are considered to be high in high-latitude productive systems and low in oligotrophic distributions. We use a recently developed method based on the measurement of the radioactive pair 210Po-210Pb to calculate particle sinking velocities in the temperate and oligotrophic North Atlantic during different bloom stages. Our estimates of average sinking velocities (ASVs) show that slowly sinking particles (〈100 m d−1) contribute significantly to carbon flux at all the locations except in the temperate regions during the bloom. ASVs appear to vary strongly with season, which we propose is caused by changes in the epipelagic community structure. Our results are the first field data to confirm the long-standing theory that particle sinking velocities increase with depth, with increases of up to 90% between 50 and 150 m depth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Wiley | AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 124 (3). pp. 1717-1735.
    Publication Date: 2022-01-31
    Description: The South-East Madagascar Bloom occurs in an oligotrophic region of the southwest Indian Ocean. Phase locked to austral summer, this sporadic feature exhibits substantial temporal and spatial variability. Several studies, with different hypotheses, have focused on the initiation mechanism triggering the bloom, but none has been as yet clearly substantiated. With 19 years of ocean color data set available as well as in situ measurements (Argo profiles), the time is ripe to review this feature. The bloom is characterized in a novel manner, and a new bloom index is suggested, yielding 11 bloom years, including 3 major bloom years (1999, 2006, and 2008). Spatially, the bloom varies from a mean structure (22–32°S; 50–70°E) both zonally and meridionally. A colocation analysis of Argo profiles and chlorophyll-a data revealed a bloom occurrence in a shallow-stratified layer, with low-salinity water in the surface layers. Additionally, a quantitative assessment of the previous hypotheses is performed and bloom occurrence is found to coincide with La Niña events and reduced upwelling intensity south of Madagascar. A stronger South-East Madagascar Current during La Niña may support a detachment of the current from the coasts, dampening the upwelling south of Madagascar, and feeding low-salinity waters into the Madagascar Basin, hence increasing stratification. Along with abundance of light, these provide the right conditions for a nitrogen-fixing cyanobacterial phytoplankton bloom onset
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: A new global climate model setup using FESOM2.0 for the sea ice‐ocean component and ECHAM6.3 for the atmosphere and land surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long‐term climate integrations using a locally eddy‐resolving ocean. Here it is evaluated in terms of (1) the mean state and long‐term drift under preindustrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy‐resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin‐up. However, it is argued that the strategy of “de‐drifting” climate runs after the short spin‐up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy‐permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...